Page 9 of 10
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
7
20
See for example: (a) Samuni, A. M.; Goldstein, S.; Russo, A.;
The induction period observed in the alkoxyamine formation is
due to the necessary accumulation of TEMPO to outcompete the oxo-
ammonium ion for the cumyl radicals.
Mitchell, J. B.; Krishna, M. C.; Neta, P. J. Am. Chem. Soc. 2002, 124,
8719-8724; (b) Goldstein, S.; Merenyi, G.; Russo, A.; Samuni, A. J. Am.
Chem. Soc. 2003, 125, 789–795; (c) Borisenko G. G.; Martin I.; Zhao Q.;
Amoscato A. A.; Kagan, V. E. J. Am. Chem. Soc. 2004, 126, 9221–9232;
(d) Wipf, P.; Xiao, J.; Jiang, J.; Belikova, N. A.; Tyurin, V.; Fink, M. P.;
Kagan, V. E. J. Am. Chem. Soc. 2005, 127, 12460-12461; (e) Dikalova, A.
E., Bikineyeva, A. T., Budzyn, K., Nazarewicz, R. R., McCann, L., Lewis,
W., Harrison, D. G., and Dikalov, S. I. Circ. Res. 2010, 107, 106−116; (f)
Ji, J., Kline, A. E., Amoscato, A., Samhan-Arias, A. K., Sparvero, L. J.,
Tyurin, V. A., Tyurina, Y. Y., Fink, B., Manole, M. D., Puccio, A. M.,
Okonkwo, D. O., Cheng, J. P., Alexander, H., Clark, R. S. B., Kochanek,
P. M., Wipf, P., Kagan, V. E., and Bayir, H. Nature Neurosci. 2012, 15,
1407−1413; (g) Canistro, D.; Boccia, C.; Falconi, R.; Bonamassa, B.;
Valgimigli, L.; Vivarelli, F.; Soleti, A.; Genova, M. L.; Lenaz, G.; Sapone,
A.; Zaccanti, F.; Abdel-Rahman, S. Z.; Paolini, M. J. Gerontol. A Biol. Sci.
Med. Sci. 2015, 70, 936-943.
21
Maillard, B.; Ingold, K. U.; Scaiano, J. C. J. Am. Chem. Soc. 1983,
105, 5095–5099.
22
Interestingly, corresponding reactions carried out in the absence of
Me4NAcO yielded lower amounts of alkoxyamine were observed. The
effect of couterions to the oxoammonuim ion will be discussed below.
23
Burton, G. W.; Doba, T.; Gabe, E.; Hughes, L.; Lee, F. L.; Prasad,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
L.; Ingold, K. U. J. Am. Chem. Soc. 1985, 107, 7053-7065.
24
Calculated from the inhibition time in O2 uptake auotxidations in-
hibited by PMHC.
25
In the absence of acid the initial rate is noticeably slower and non-
linear – increasing with time, perhaps due to depletion of O2 over the
longer period of time and improving the competition with alkyl radicals
– see Figure S16 in the Supporting Information.
8
26
Kovtun, G. A.; Aleksandrov, A. L.; Golubev, V. A. Bull. Acad. Sci.
Ma, Y.; Loyns, C.; Price, B.; Chechik, V. Org. Biomol. Chem., 2011, 9,
USSR 1974, 22, 2115-2121.
9
5573-5578.
27
(a) Bowry, V. W.; Ingold, K. U. J. Am. Chem. Soc. 1992, 114, 4992–
It should be pointed out that the spectral characteristics ascribed to
TEMPO+ by Ma et al.26 do not correspond to those reported by other
investigators, e.g. Goldstein et al.7b or those determined in our own
laboratory. See ref. 7b for a discussion.
4996; (b) Sobek, J.; Martschke, R.; Fischer, H. J. Am. Chem. Soc. 2001,
123, 2849–2857.
10
Gryn’ova, G.; Ingold, K. U.; Coote, M. L. J. Am. Chem. Soc. 2012,
28
Numerical fitting of styrene autoxidations in MeCN (30°C) inhibit-
134, 12979–12988.
11
ed by TEMPO (or TEMPO+) in the presence of TFA (4.3 mM) and
HBF4 (4.3 mM) afforded k11 ~ 1×109 M-1s-1 and < 109 M-1s-1, respective-
Bolsman, T.; Blok, A.; Frijns, J. Recl. des Trav. Chim. des Pays-Bas
1978, 97, 313–319.
12
ly.
This can be found throughout the literature, in particular the two
29
Jensen, R. K.; Korcek, S.; Mahoney, L. R.; Zinbo, M. J. Am. Chem.
areas where nitroxide radical chemistry is particularly important: radical
polymerization (Matyjaszewski, K.; Davis, T. P. Handbook of Radical
Polymerization; Wiley: Hoboken, NJ, 2002) and spin-labeling (Kochergin-
sky, N.; Swartz, H. M. Nitroxide Spin Labels: Reactions in Biology and Chemis-
try; CRC Press: Boca Raton, FL, 1995).
Soc. 1979, 101, 7574–7584.
30
Shah, R.; Haidasz, E. A.; Valgimigli, L.; Pratt, D. A. J. Am. Chem.
Soc. 2015, 137, 2440–2443.
31
Hanthorn, J.; Haidasz, E.; Gebhardt, P.; Pratt, D. Chem. Commun.
13
2012, 48, 10141–10143.
32
Amorati, R.; Pedulli, G. F.; Pratt, D. A.; Valgimigli, L. Chem.
Commun. (Camb). 2010, 46, 5139–5141.
14
A sample of TEMPO heated in a vial to 160°C lost ca. 60% of its
mass over the course of 1 hour.
33
The role of an acid-mediated disproportionation of TEMPO to
produce the corresponding hydroxylamine was ruled out on kinetic
grounds (see reference 13). However, it is also possible that the reaction
takes place by a coupled proton-electron transfer wherein a proton is
transferred from the acid to the peroxyl radical concerted with the
movement of an electron from TEMPO to the peroxyl. Since we found
that there is a primary kinetic isotope effect on these reactions, a H-
atom must be in flight in the RDS of the reaction, precluding any rapid
pre-equilibrium between peroxyl and protonated peroxyl, such as that
which is involved when phenols react with peroxyl radicals under acidic
conditions, see: Valgimigli, L.; Amorati, R.; Petrucci, S.; Pedulli, G. F.;
Hu, D.; Hanthorn, J. J.; Pratt, D. A. Angew. Chem. Intl. Ed. 2009, 48,
8348-8351.
This arises due to the three distinct phases observable in the initial
part of the reaction; the inhibited autoxidation, the uninhibited autoxida-
tion where propagation proceeds at a constant rate and the slowing of
propagation in favour of termination with increasing concentration of
hydroperoxides, which increase radical concentration upon thermolysis.
Similar data was obtained when the corresponding bis-oxoammonium
ion was added in lieu of 2 (see Supporting Information).
34
Jensen, R. K.; Korcek, S.; Mahoney, L. R.; Zinbo, M. J. Am. Chem.
Soc. 1981, 103, 1742–1749.
35
Jalan, A.; Alecu, I. M.; Meana-Pañeda, R.; Aguilera-Iparraguirre, J.;
Yang, K. R.; Merchant, S. S.; Truhlar, D. G.; Green, W. H. J. Am. Chem.
Soc. 2013, 135, 11100–11114.
36
15
Sheldon, R. A.; Arends, I. W. C. E.; Brink, G.-J.; Dijksman, A. Acc.
Shah, R.; Pratt, D. A. In preparation.
Chem. Res. 2002, 35, 774–781.
16
37
This increase is likely the result of thermal decomposition of γ-
(a) Bailey, W. F.; Bobbitt, J. M.; Wiberg, K. B. J. Org. Chem. 2007,
dihydroperoxides present at concentration below those reliably deter-
72, 4504–4509; (b) Hoover J. M.; Ryland B. L.; Stahl S. S.; J. Am. Chem.
Soc., 2013, 135, 2357–2367; (c) Ryland B. L.; McCann S. D.; Brunold, T.
C.; Stahl S. S. J. Am. Chem. Soc., 2014, 136, 12166–12173.
mined by our method (ca. 1 mM).
38 Bolsma, Blok and Frijns suggest [O2]~10-3 mM in paraffin at 130°C
under an atmosphere of O2, but do not provide a reference or details of
the measurement.11 Korcek and co-workers report [O2] = 2.65 mM in
17
Denisov, E. T. Polym. Degrad. Stab. 1991, 34, 325–332.
18
Baran has invoked this electron transfer in a mechanistic proposal
hexadecane at 160°C under an atmosphere of O2, which they deter-
mined directly, see: Jensen, R. K.; Korcek, S.; Zinbo, M. Oxid. Commun.
1990, 13, 258-262.
for the guided desaturation of unactivated alkanes. See: Voica, A.-F.;
Mendozza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P. S. Nature Chem.
2012, 4, 629-635.
39
Up to 2.7 M of 2,2,6,6-tetramethyl-1-(2-propenyloxy)-piperidine
19
Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A.
had no detectable influence on the product distribution in a methyl
linoleate clocking experiment (carried out as described in Roschek, B.;
Tallman, K. A.; Rector, C. L.; Gillmore, J. G.; Pratt, D. A.; Punta, C.;
Porter, N. A. J. Org. Chem. 2006, 71, 3527–3532). The maximum rate
J. Chem. Phys. 1999, 110, 2822-2827.
9
ACS Paragon Plus Environment