Page 5 of 6
ACS Catalysis
(8) Cochet, T.; Bellosta, V.; Roche, D.; Ortholand, J. Y.; Greiner,
Synergy-S diffractometer, supported by the NSF
(CHE-1626172).
A.; Cossy, J. Rhodium(III)-Catalyzed Allylic C-H Bond Amination.
Synthesis of Cyclic Amines from ω-Unsaturated N-Sulfonylamines.
Chem. Commun. 2012, 48, 10745-10747.
(9) Burman, J. S.; Blakey, S. B. Regioselective Intermolecular
Allylic C−H Amination of Disubstituted Olefins via Rhodium/π-Allyl
Intermediates. Angew. Chem. Int. Ed. 2017, 56, 13666-13699.
(10) Nelson, T. A. F.; Blakey, S. B. Intermolecular Allylic C−H
Etherification of Internal Olefins. Angew. Chem. Int. Ed. 2018, 57,
14911-14195.
(11) (a) Lerchen, A.; Knecht, T.; Koy, M.; Ernst, J. B.; Bergander,
K.; Daniliuc, C. G.; Glorius, F. Non-Directed Cross-Dehydrogenative
(Hetero)Arylation of Allylic C(sp3)−H Bonds Enabled by C−H
Activation. Angew. Chem. Int. Ed. 2018, 57, 15248-15252. (b) Knecht,
T.; Pinkert, T.; Dalton, T.; Lerchen, A.; Glorius, F. Cp*RhIII-Catalyzed
Allyl–Aryl Coupling of Olefins and Arylboron Reagents Enabled by
C(sp3)–H Activation. ACS Catal. 2019, 9, 1253-1257.
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interest
REFERENCES
(1) (a) Trost, B. M. Pd- and Mo-Catalyzed Asymmetric Allylic
Alkylation. Org. Process Res. Dev. 2012, 16, 185-194. (b) Graening,
T.; Schmalz, H. G. Pd-Catalyzed Enantioselective Allylic Substitution:
New Strategic Options for the Total Synthesis of Natural Products.
Angew. Chem. Int. Ed. 2003, 42, 2580-2584. (c) Turnbull, B. W. H.;
Evans, P. A. Asymmetric Rhodium-Catalyzed Allylic Substitution
Reactions: Discovery, Development and Applications to Target-
Directed Synthesis. J. Org. Chem., 2018, 83, 11463-11479. (d) Qu, J.;
Helmchen, G. Applications of Iridium-Catalyzed Asymmetric Allylic
Substitution Reactions in Target-Oriented Synthesis. Acc. Chem. Res.
2017, 50, 2539-2555.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(12) For selected references, see: (a) Park, Y.; Park, K. T.; Kim, J.
G.; Chang, S. Mechanistic Studies on the Rh(III)-Mediated Amido
Transfer Process Leading to Robust C-H Amination with a New Type
of Amidating Reagent. J. Am. Chem. Soc. 2015, 137, 4534-4542. (b)
Park, J.; Chang, S. Comparative Catalytic Activity of Group 9
[Cp*MIII] Complexes: Cobalt-Catalyzed C-H Amidation of Arenes
with Dioxazolones as Amidating Reagents. Angew. Chem. Int. Ed.
2015, 54, 14103-14107. (c) Park, Y.; Jee, S.; Kim, J. G.; Chang, S.
Study of Sustainability and Scalability in the Cp*Rh(III)-Catalyzed
Direct C-H Amidation with 1,4,2-Dioxazol-5-Ones. Org. Process Res.
Dev. 2015, 19, 1024-1029. (d) Hwang, Y.; Park, Y.; Chang, S.
Mechanism-Driven Approach To Develop a Mild and Versatile C−H
Amidation through IrIII Catalysis. Chem. Eur. J. 2017, 23, 11147-
11152. (e) Park, Y.; Heo, J.; Baik, M.-H.; Chang, S. Why is the Ir(III)-
Mediated Amido Transfer Much Faster Than the Rh(III)-Mediated
Reaction? A Combined Experimental and Computational Study. J. Am.
Chem. Soc. 2016, 138, 14020-14029. (f) Park, J.; Lee, J.; Chang, S.
Iterative C–H Functionalization Leading to Multiple Amidations of
Anilides. Angew. Chem. Int. Ed. 2017, 56, 4256-4260.
(13) For alternative approaches to allylic C-H functionalization, see:
(a) Zalatan, D. N.; Du Bois, J. A Chiral Rhodium Carboxamidate
Catalyst for Enantioselective C-H Amination. J. Am. Chem. Soc. 2008,
130, 9220-9221. (b) Harvey, M. E.; Musaev, D. G.; Du Bois, J. A
Diruthenium Catalyst for Selective, Intramolecular Allylic C-H
Amination: Reaction Development and Mechanistic Insight Gained
through Experiment and Theory. J. Am. Chem. Soc. 2011, 133, 17207-
17216. (c) Dolan, N. S.; Scamp, R. J.; Yang, T.; Berry, J. F.;
Schomaker, J. M. Catalyst-Controlled and Tunable, Chemoselective
Silver-Catalyzed Intermolecular Nitrene Transfer: Experimental and
Computational Studies. J. Am. Chem. Soc. 2016, 138, 14658-14667. (d)
Huang, M.; Yang, T.; Paretsky, J. D.; Berry, J. F.; Schomaker, J. M.
Inverting Steric Effects: Using “Attractive” Noncovalent Interactions
to Direct Silver-Catalyzed Nitrene Transfer. J. Am. Chem. Soc. 2017,
139, 17376-17386. (e) Weatherly, C.; Alderson, J. M.; Berry, J. F.;
Hein, J. E.; Schomaker, J. M. Catalyst-Controlled Nitrene Transfer by
Tuning Metal:Ligand Ratios: Insight into the Mechanisms of
Chemoselectivity. Organometallics 2017, 36, 1649-1661. (d) Bao, H.;
Tambar, U. K. Catalytic Enantioselective Allylic Amination of
Unactivated Terminal Olefins via an Ene Reaction/[2,3]-
Rearrangement. J. Am. Chem. Soc. 2012, 134, 18495-18498. (e) Bao,
H.; Bayeh, L.; Tambar, U. K. Allylic Functionalization of Unactivated
Olefins with Grignard Reagents. Angew. Chem. Int. Ed. 2014, 53,
1664-1668. (f) Bayeh, L.; Le, P. Q.; Tambar, U. K. Catalytic Allylic
Oxidation of Internal Alkenes to a Multifunctional Chiral Building
Block. Nature 2017, 547, 196-200. (g) Liang, C.; Collet, F.; Robert-
Peillard, F.; Müller, P.; Dodd, R. H.; Dauban, P. Toward a Synthetically
Useful Stereoselective C-H Amination of Hydrocarbons. J. Am. Chem.
Soc. 2008, 130, 343-350. (h) Lescot, C.; Darses, B.; Collet, F.;
Retailleau, P.; Dauban, P. Intermolecular C-H Amination of Complex
Molecules: Insights into the Factors Governing the Selectivity. J. Org.
Chem. 2012, 77, 7232-7240. (i) Rey-Rodriguez, R.; Jestin, G.; Gandon,
V.; Grelier, G.; Retailleau, P.; Darses, B.; Dauban, P.; Gillaizeau, I.
Intermolecular Rhodium(II)-Catalyzed Allylic C(sp3)–H Amination of
Cyclic Enamides. Adv. Synth. Catal. 2018, 360, 513-518. (j) Hong, S.
(2) Hartwig, J. F.; Organotransition Metal Chemistry: From Bonding
to Catalysis; University Science Books: Mill Valley, CA, 2010, pp 974-
1008.
(3) (a) Trost, B. M.; Weber, L.; Strege, P. E.; Fullerton, T. J.;
Dietsche, T. J. Allylic Alkylation: Nucleophilic Attack on π-
Allylpalladium Complexes. J. Am. Chem. Soc. 1978, 100, 3416-3426.
(b) Tsuji, Y.; Kusui, T.; Kojima, T.; Sugiura, Y.; Yamada, N.; Tanaka,
S.; Ebihara, M.; Kawamura, T. Palladium-Complex-Catalyzed
Cyanation of Allylic Carbonates and Acetates Using Trimethylsilyl
Cyanide. Organometallics 1998, 17, 4835-4841. (c) Hayashi, T.;
Yamamoto, A.; Hagihara, T. Stereo- and Regiochemistry in Palladium-
Catalyzed Nucleophilic Substitution of Optically Active (E)- and (Z)-
Allyl Acetates. J. Org. Chem. 1986, 51, 723-727. (d) Hayashi, T.;
Konishi, M.; Kumada, M. Stereochemistry of the Reaction of an
Optically Active π-Allylpalladium Complex with Nucleophiles. J.
Chem. Soc. Chem. Commun. 1984, 107-108.
(4) For selected references, see: (a) Young, A. J.; White, M. C.
Catalytic Intermolecular Allylic C-H Alkylation. J. Am. Chem. Soc.
2008, 130, 14090-14091. (b) Young, A. J.; White, M. C. Allylic C-H
Alkylation of Unactivated α-Olefins: Serial Ligand Catalysis Resumed.
Angew. Chem. Int. Ed. 2011, 50, 6824-6827. (c) Howell, J. M.; Liu,
W.; Young, A. J.; White, M. C. General Allylic C-H Alkylation with
Tertiary Nucleophiles. J. Am. Chem. Soc., 2014, 136, 5750-5754.
(5) For selected references, see: (a) Reed, S. A.; White, M. C.
Catalytic Intermolecular Linear Allylic C-H Amination via
Heterobimetallic Catalysis. J. Am. Chem. Soc. 2008, 130, 3316-3318.
(b) Reed, S. A.; Mazzotti, A. R.; White, M. C. A Catalytic, Brønsted
Base Strategy for Intermolecular Allylic C-H Amination. J. Am. Chem.
Soc. 2009, 131, 11701-11706. (c) Ma, R.; White, M. C. C-H to C-N
Cross-Coupling of Sulfonamides with Olefins. J. Am. Chem. Soc.,
2018, 140, 3202-3205.
(6) For selected references, see: (a) Chen, M. S.; White, M. C. A
Sulfoxide-Promoted, Catalytic Method for the Regioselective
Synthesis of Allylic Acetates from Monosubstituted Olefins via C-H
Oxidation. J. Am. Chem. Soc. 2004, 126, 1346-1347. (b) Vermeulen,
N. A.; Delcamp, J. H.; White, M. C. Synthesis of Complex Allylic
Esters via C-H Oxidation vs C-C Bond Formation. J. Am. Chem. Soc.
2010, 132, 11323-11328. (c) Chen, M. S.; Prabagaran, N.; Labenz, N.
A.; White, M. C. Serial Ligand Catalysis: A Highly Selective Allylic
C-H Oxidation. J. Am. Chem. Soc. 2005, 127, 6970-6971.
(7) For additional allylic C-H aminations, see: (a) Liu, G.; Yin, G.;
Wu, L. Palladium-Catalyzed Intermolecular Aerobic Oxidative
Amination of Terminal Alkenes: Efficient Synthesis of Linear
Allylamine Derivatives. Angew. Chem. Int. Ed. 2008, 47, 4733-4736.
(b) Wu, L.; Qiu, S.; Liu, G. Brønsted Base-Modulated Regioselective
Pd-Catalyzed Intramolecular Aerobic Oxidative Amination of
Alkenes: Formation of Seven-Membered Amidaes and Evidence for
Allylic C-H Activation. Org Lett., 2009, 11, 2707-2710. (c) Yin, G.;
Wu, Y.; Liu, G. Scope and Mechanism of Allylic C-H Amination of
Terminal Alkenes by Palladium/PhI(OPiv)2 Catalyst System: Insights
into the Effect of Naphthoquinone. J. Am. Chem. Soc., 2010, 132,
11978-11987.
ACS Paragon Plus Environment