S. Leela et al. / Spectrochimica Acta Part A 74 (2009) 78–83
83
Resolution X-ray Diffraction study shows that the perfection of the
crystal is fair even though it contains a low angle boundary. The
relative third order nonlinear optical absorption and the nonlinear
optical refractive index were calculated by the Z-scan technique.
Acknowledgment
One of the authors (SL) thanks to Dr. A. Ilangovan, School of
Chemistry, Bharathidasan University, Tiruchirappalli for fruitful
discussion and Dr. Sastikumar, Professor and Head, NIT, Tiruchi-
rappalli for his permission to utilize the facilities available at the
Optics Laboratory. Further the authors thank University Grant Com-
mission, Government of India for financial assistance [File No.
3237/2007 (SR)].
References
[1] E.W. Van Stryland, H. Vanherzeele, M.A. Woodall, M.J. Soileau, A.L. Smirl, S.
Guha, T.F. Bogess, Opt. Eng. 24 (1985) 613.
[2] M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum
Electron. 26 (1990) 760–769.
[3] J.J. Rodrigues Jr., L. Misoguti, F.D.C.R. Nunes Mendonca, S.C. Zilio, Opt. Mater. 22
(2003) 235–240.
Fig. 14. Microhardness values vs. load for CDMABA crystal on (0 0 1).
[4] M. Somac, A. Somac, B.L. Davies, M.G. Humphery, M.S. Wong, Opt. Mater. 21
(2002) 485–488.
3.8. Hardness
[5] L.V. Natarajan, R.L. Sutherland, V.P. Tondiaglia, T.J. Bunning, W.W. Adams, J.
Nonlinear Opt. Phys. Mater. 5 (1996) 89–98.
[6] X. Xu, W. Qiu, Q. Zhou, J. Tang, F. Yang, Z. Sun, P. Audebert, J. Phys. Chem. B
(Article) 112 (16) (2008) 4913–4917.
[7] J.G. Breitzar, D.D. Diott, L.K. Iwaki, S.M. Kirkpatrick, T.B. Rauchturs, J. Phys. Chem.
A 103 (1999) 6930–6937.
[8] W. Yu, L. Yang, T.L. Zhang, J.G. Zhang, F.J. Ren, Y.H. Liu, R.F. Wu, J.Y. Guo, J. Mol.
Struct. 794 (2006) 255–260.
[9] K. Srinivasan, R. Biravaganesh, R. Gandhimathi, P. Ramasamy, J. Cryst. Growth
236 (2002) 381–392.
[10] N. Azariah, A.S.H. Hameed, T. Thennappan, M. Noel, G. Ravi, Mater. Chem. Phys.
88 (2004) 90–96.
[11] S. Leela, K. Ramamurthi, H.S. Evans, G. Vasuki, Acta Crystallogr. E 63 (2007)
o4805.
[12] X.L. You, C.R. Lu, Y. Zhang, D.C. Zhang, Acta Crystallogr. C 60 (2004) o693–o695.
[13] K. Udayalakshmi, K. Ramamurthi, Cryst. Res. Technol. 40 (2005) 1165–1168.
[14] R.L. David (Ed.), CRC Handbook of Chemistry and Physics, 15, 80th edition, CRC
Press, LLC, 1999–2000, p. 14.
Microhardness testing is one of the best methods for under-
standing the mechanical properties of materials [24]. The
mechanical strength of the CDMABA crystal was measured using a
HMU microhardness tester fitted with a diamond indenter attached
to HMU incident light microscope. Indentations were made for vari-
out on the prominent (0 0 1) face and the average diagonal length
was calculated for an indentation time of 8 s. The Vickers hard-
ness number (HV) of the crystal was calculated using the relation
HV = 1.8544 P/d2, where P is the applied load in kg and d is the aver-
age diagonal length of impression in mm. Fig. 14 shows the variation
of HV with load for CDMABA. Cracks were observed for loads more
than 50 g.
[15] P. Kalsi, Spectroscopy of Organic Compounds, Wiley Eastern, New Delhi, 1985.
[16] W. Kemp, Organic Spectroscopy, 3rd edition, ELBS, Macmillan, 1993.
[17] Y.R. Sharma, Elementary Organic Spectroscopy, S. Chand, New Delhi, 2000.
[18] G. Bhagavannarayana, S. Parthiban, Subbiah Meenakshisundaram, J. Appl. Cryst.
39 (2006) 784–790.
[19] G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bart-
wal, J. Appl. Cryst. 38 (2005) 768–771.
[20] M. Sheik-Bahae, A.A. Said, E.W. VanStryland, Opt. Lett. 14 (1989) 955–957.
[21] E.W. Vanstryland, M. Sheik-Bahae, in: M.G. Kuzyk, C.W. Dirk (Eds.), Charac-
terisation Techniques and Tabulation for Organic Nonlinear Materials, Marcel
Dekker Inc., 1998, pp. 655–692.
[22] T. Kanagasekaran, P. Mythili, P. Srinivasan, A.Y. Nooraldeen, P.K. Palanisamy, R.
Gopalakrishnan, Cryst. Growth Des. 8 (2008) 2335–2339.
[23] H.H. Willard, L.L. Merritt Jr, J.A. Dean, F.A. Settle, Instrumental Methods of Anal-
ysis, Wadsworth Publishing Company, USA, 1986, p. 609.
[24] B. Lal, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 78 (2003) 202–207.
4. Conclusion
Optical quality single crystals of CDMABA were grown at room
temperature using the solution growth technique. The morphology
unveils the growth habits of the material. The UV–vis–NIR spec-
trum elucidates that the crystal is transparent between 360 nm
and 1200 nm. From the FTIR, FT-Raman and NMR spectrum, the
formation of the imine group of the material was confirmed. Ther-
mal analyses indicate that the crystal has good thermal stability. A
sharp peak observed at 150 ◦C in the DSC curve corresponds to the
melting point of the material. The microhardness study revealed
that the crystal develops cracks for load more than 50 g. High