polypyridyl derivatives selectively inhibit PTP1B 2-fold and
0-fold stronger than TCPTP and SHP-1, but Na [VO-
21171109), the Specialized Research Fund for the Doctoral
Program of Higher Education (20111401110002), the Scientific
Research Foundation for the Returned Overseas Chinese Scho-
lars, State Education Ministry (20093602), the China Scholar-
ship Council, the Natural Science Foundation of Shanxi
Province (20051013, 2010011011-2, 2011011009-1 and
2011021006-2), Shanxi Scholarship Council of China
(2012-004) and Instrumental Analysis Foundation of Large
Scale Instruments of Shanxi University, China.
1
2
(
Glu) (CH OH)] almost equally inhibit PTP1B, TCPTP, SHP-1
2 3
and HePTP (hematopoietic tyrosine phosphatase). Obviously,
complexes 2 and 4 show better selectivity to PTP1B. All of
these results illustrate that the ligands of vanadium complexes
influence the inhibitory effects of different PTPs. Properly modi-
fying the organic ligand moieties on vanadium may result in
screening potent and selective vanadium-based PTP1B
inhibitors.
Kinetic analysis of recombinant PTPs inhibition
Notes and references
Complex 2 was further chosen to investigate the inhibition mode
of the five PTPs because of its stronger potency and better selec-
tivity against PTP1B. As shown in Fig. 5, for PTP1B, TCPTP
and SHP-1, the Lineweaver–Burk double-reciprocal plot of the
kinetic data of complex 2 shows that the lines converge at an
intersection on the x-axis left of the y-axis, implying a noncom-
petitive inhibition mode versus pNPP, while the lines converge at
an intersection on the y-axis above the x-axis for PTP-MEG2
and SHP-2, indicating a classical competitive inhibition mode
1 J. N. Andersen, P. G. Jansen, S. M. Echwald, O. H. Mortensen,
T. Fukada, R. Del Vecchio, N. K. Tonks and N. P. Moller, FASEB J.,
2
004, 18, 8.
M. Stuible, K. M. Doody and M. L. Tremblay, Cancer Metastasis Rev.,
008, 27, 215.
2
2
3 K. M. Heinonen, F. P. Nestel, E. W. Newell, G. Charette, T. A. Seemayer,
M. L. Tremblay and W. S. Lapp, Blood, 2004, 103, 3457.
4
L. I. Pao, K. Badour, K. A. Siminovitch and B. G. Neel, Annu. Rev.
Immunol., 2007, 25, 473.
5 T. Vang, A. V. Miletic, Y. Arimura, L. Tautz, R. C. Rickert and
T. Mustelin, Annu. Rev. Immunol., 2008, 26, 29.
6
7
S. Hardy, S. G. Julien and M. L. Tremblay, Anti-Cancer Agents Med.
Chem., 2012, 12, 4.
M. A. T. Blaskovich, Curr. Med. Chem., 2009, 16, 2095.
versus pNPP. The inhibition constants (K ) for PTP1B, TCPTP,
i
SHP-1, PTP-MEG2 and SHP-2 are calculated to be 0.65, 5.5,
6
.0, 0.51 and 5.8 μM, respectively (Fig. 5, inset). The different
8 P. Heneberg, Curr. Med. Chem., 2009, 16, 706.
M. Elchebly, Science, 1999, 283, 1544.
9
inhibition modes over the five PTPs demonstrate that with the
variation of PTPs conformations, vanadium complexes bind
different PTPs at different sites. Compared with previous reports
that vanadium complexes inhibit PTP1B in a competitive inhi-
1
0 B. A. Zinker, C. M. Rondinone, J. M. Trevillyan, R. J. Gum,
J. E. Clampit, J. F. Waring, N. Xie, D. Wilcox, P. Jacobson, L. Frost,
P. E. Kroeger, R. M. Reilly, S. Koterski, T. J. Opgenorth, R. G. Ulrich,
S. Crosby, M. Butler, S. F. Murray, R. A. McKay, S. Bhanot, B. P. Monia
and M. R. Jirousek, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 11357.
24,26,28–31
bition mode,
the noncompetitive inhibition mode of
11 R. Di Paola, L. Frittitta, G. Miscio, M. Bozzali, R. Baratta, M. Centra,
complex 2 inhibiting PTP1B suggests that as the structure
changes, vanadium complexes can bind to PTP1B at different
sites. The results illustrate that both the structures of vanadium
complexes and the conformations of PTPs influence the PTPs
inhibition, which provide a greater opportunity to screen potent
and selective PTP1B inhibitors.
D. Spampinato, M. G. Santagati, T. Ercolino, C. Cisternino, T. Soccio,
S. Mastroianno, V. Tassi, P. Almgren, A. Pizzuti, R. Vigneri and
V. Trischitta, Am. J. Hum. Genet., 2002, 70, 806.
2 T. Klupa, M. T. Malecki, M. Pezzolesi, L. Ji, S. Curtis, C. D. Langefeld,
S. S. Rich, J. H. Warram and A. S. Krolewski, Diabetes, 2000, 49, 2212.
3 N. D. Palmer, J. L. Bento, J. C. Mychaleckyj, C. D. Langefeld,
J. K. Campbell, J. M. Norris, S. M. Haffner, R. N. Bergman and
D. W. Bowden, Diabetes, 2004, 53, 3013.
1
1
14 N. J. Spencer-Jones, X. L. Wang, H. Snieder, T. D. Spector, N. D. Carter
and S. D. O’Dell, Diabetes, 2005, 54, 3296.
5 S. Zhang and Z. Y. Zhang, Drug Discovery Today, 2007, 12, 373.
6 A. J. Nichols, R. D. Mashal and B. Balkan, Drug Dev. Res., 2006, 67,
Conclusions
1
1
In summary, we have synthesized and characterized five oxo-
vanadium(IV) complexes. Biochemical assays demonstrate that
the oxovanadium(IV) complexes are potent inhibitors of PTP1B,
TCPTP, PTP-MEG2, SHP-1 and SHP-2, but exhibit different
inhibitory abilities over different PTPs. Complexes 2 and 4
display better selectivity to PTP1B over the other four PTPs.
Kinetic data show complex 2 inhibits PTP1B, TCPTP and
SHP-1 with a noncompetitive inhibition mode, but a classical
competitive inhibition mode for PTP-MEG2 and SHP-2. The
results demonstrate that both the structures of vanadium com-
plexes and the conformations of PTPs influence PTP inhibition
activity. Properly modifying the organic ligand moieties on
vanadium may result in screening potent and selective
vanadium-based PTP1B inhibitors.
5
59.
17 K. H. Thompson and C. Orvig, J. Inorg. Biochem., 2006, 100, 1925.
18 H. Sakurai, Y. Yoshikawa and H. Yasui, Chem. Soc. Rev., 2008, 37, 2383.
9 D. A. Barrio and S. B. Etcheverry, Curr. Med. Chem., 2010, 17, 3632.
0 G. R. Willsky, L.-H. Chi, M. Godzala III, P. J. Kostyniak, J. J. Smee,
A. M. Trujillo, J. A. Alfano, W. Ding, Z. Hu and D. C. Crans, Coord.
Chem. Rev., 2011, 255, 2258.
1 J. H. McNeill, V. G. Yuen, S. Dai and C. Orvig, Mol. Cell. Biochem.,
1
2 K. H. Thompson, J. Lichter, C. LeBel, M. C. Scaife, J. H. McNeill and
C. Orvig, J. Inorg. Biochem., 2009, 103, 554.
1
2
2
995, 153, 175.
2
23 D. C. Crans, J. J. Smee, E. Gaidamauskas and L. Q. Yang, Chem. Rev.,
004, 104, 849.
2
2
2
2
2
4 K. G. Peters, M. G. Davis, B. W. Howard, M. Pokross, V. Rastogi,
C. Diven, K. D. Greis, E. Eby-Wilkens, M. Maier, A. Evdokimov,
S. Soper and F. Genbauffe, J. Inorg. Biochem., 2003, 96, 321.
5 B. I. Posner, R. Faure, J. W. Burgess, A. P. Bevan, D. Lachance,
G. Zhang-Sun, I. G. Fantus, J. B. Ng, D. A. Hall and B. S. Lum, J. Biol.
Chem., 1994, 269, 4596.
6 G. Huyer, S. Liu, J. Kelly, J. Moffat, P. Payette, B. Kennedy,
G. Tsaprailis, M. J. Gresser and C. Ramachandran, J. Biol. Chem., 1997,
2
Acknowledgements
72, 843.
This work was supported financially by the National Natural
Science Foundation of China (20471033, 21001070 and
7 F. Nxumalo, N. R. Glover and A. S. Tracey, J. Biol. Inorg. Chem., 1998,
3, 534.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 11116–11124 | 11123