The hydrogenation of 2,5-dimethylthiophene (1d) was conducted by the method used for the
hydrogenation of compound 1a. We used compound 1d (0.057 g, 0.508 mmol), 90% H2SO4 (2.987 g,
30.480 mmol), Zn dust (3.654 g, 55.880 mmol), and CH2Cl2 (5 ml). The hydrogenation products 2d and 3d were
identified by GLC–MS (I) (GLC, version 1, 130°C). The compounds corresponding to the first peak (yield
0.034 g, 60%) and the second peak (yield 0.0013 g, 3.7%) were isolated from the benzene extract by preparative
1
GLC. First peak – compound 2d. H NMR spectrum, δ: 1.34 (6Н, m, СН3); 4.27 (2Н, m, СН); 5.57 (2Н, m,
НС=СН). Mass spectrum, m/z (Irel, %): 114 [M]+ (110), 99 [М-CH3]+ (100), 85 [М-С2Н5]+ (11), 59 [SC2H3]+
(30), 45 [SCH]+ (3). Second peak – compound 3d. Mass spectrum, m/z (Irel, %): 116 [M]+ (40), 101 [М-CH3]+
(100), 87 [М-С2Н5]+ (1), 59 [SC2H3]+ (10), 45 [SCH]+ (20).
The hydrogenation of 2-formylthiophene (1e) was conducted by the method used for the
hydrogenation of compound 1b. We used compound 1e (0.087 g, 0.78 mmol), 90% H2SO4 (4.586 g,
46.80 mmol), Zn dust (5.611 g, 85.80 mmol), and CH2Cl2 (5 ml). The reaction time was 6 h. The hydrogenation
products 1e were identified by GLC by the agreement of the retention times of the products and the authentic
compounds on three (in the extreme case, two) columns of different polarity (versions 1, 3, and 4.)
The hydrogenation of 2-acetylthiophene (1f) was conducted by the method used for the hydrogenation
of compound 1a. We used compound 1f (0.101 g, 0.8 mmol), 89% H2SO4 (4.704 g, 48.0 mmol), Zn dust
(11.510 g, 176.0 mmol), and CH2Cl2 (5 ml). The reaction time was 6 h. The hydrogenation products from
compound 1f were identified by GLC–MS (I) and GLC (versions 1, 3, 4). First peak – compound 2a. Mass
spectrum, m/z (Irel, %): 114 [M]+ (15), 99 [М-СН3]+ (22), 85 [М-C2H5]+ (100), 59 [SC2H3]+ (10), 45 [CH=S]+
(13). Second peak – compound 3a. Mass spectrum, m/z (Irel, %): 116 [M]+ (25), 101 [M-CH3]+ (12), 87
[M-C2H5]+ (100), 59 [SC2H3]+ (10), 45 [SCH]+ (26).
REFERENCES
1.
2.
A. V. Mashkina and A. A. Zirka, Kinetika i Kataliz, 41, 575 (2000).
A. V. Mashkina and L. G. Sakhaltueva, Khim. Geterotsikl. Soedin., 598 (2001). [Chem. Heterocycl.
Comp., 37, 546 (2001)].
3.
4.
A. V. Mashkina and L. G. Sakhaltueva, Neftekhimiya, 41, 142 (2002).
L. V. Manuilova, V. P. Fedin, Yu. V. Mironov, E. M. Moroz, Т. V. Pasynkova, and V. I. Zaikovskii,
T. S. Sukhareva, React. Kinet. Catal. Lett., 54, 281 (1995).
A. V. Mashkina, Catalysis of Reactions of Organic Compounds [in Russian], SO RAN, Novosibirsk
(2005), p. 122.
5.
6.
7.
8.
S. F. Birch and D. T. McAllan, J. Chem. Soc., 2556 (1951).
S. F. Birch and D. T. McAllan, J. Chem. Soc., 3411 (1951).
D. N. Kursanov, Z. N. Parnes, M. I. Kalinkin, and N. M. Loim, Ionic Hydrogenation [in Russian],
Khimiya, Moscow (1979), p. 62.
9.
10.
11.
V. A. Vasin, S. G. Kostryukov, S. Yu. Vovod, P. S. Petrov, and V. V. Razin, Zh. Org. Khim., 43, 1414
(2007).
Yu. I. Lyakhovetskii, F. M. Latypova, N. K. Lyapina, and Z. N. Parnes, Zh. Org. Khim., 28, 1275
(1992).
M. G. Shvekhgeimer, Khim. Geterotsikl. Soedin., 1299 (1998). [Chem. Heterocycl. Comp., 34, 1101
(1998)].
12.
13.
N. Morita and N. Krause, Angew. Chem., Int. Ed., 45, 1897 (2006).
W. H. Green and A. B. Harvey, Spectrochim. Acta., 25A, 723 (1969).
1084