Paper
RSC Advances
of 1 and 2.74 More interestingly, the signal at 69 eV matching the
binding energy of Br 3d3/2 mixed with Br 3d5/2 indicates the
presence of Brꢀ aer the immersion of steel in the HCl solution
containing 1, however, in the same region,74 there were no
signals detected with the addition of 2. Therefore, it can be
interpreted that the counterion Brꢀ in 1 can adsorb on the steel
7 I. B. Obot, N. O. Obi-Egbedi and S. A. Umoren, Corros. Sci.,
2009, 51, 276–282.
8 F. Bentiss, M. Bouanis and B. Mernari, J. Appl. Electrochem.,
2002, 32, 671–678.
9 Q. Qu, S. Jiang and W. Bai, Electrochim. Acta, 2007, 52, 6811–
6820.
surface and display a co-adsorption effect between the coun- 10 S. M. Li, H. R. Zhang and J. H. Liu, Trans. Nonferrous Met.
terions and the organic cations.
Soc. China, 2007, 17, 318–325.
11 S. V. Lamaka, M. L. Zheludkevich and K. A. Yasakau,
Electrochim. Acta, 2007, 52, 7231–7247.
12 G. Achary, H. P. Sachin and Y. A. Naik, Mater. Chem. Phys.,
2008, 107, 44–50.
13 A. Popova, M. Christov and A. Vasilev, Corros. Sci., 2011, 53,
1770–1777.
14 M. K. Pavithra, T. V. Venkatesha and K. Vathsala, Corros. Sci.,
2010, 52, 3811–3819.
15 X. Wang, H. Yang and F. Wang, Corros. Sci., 2012, 55, 145–
152.
16 P. C. Okafar and Y. Zheng, Corros. Sci., 2009, 51, 850–859.
17 S. A. Umoren and E. E. Ebenso, Mater. Chem. Phys., 2007,
106, 387–393.
18 M. Bouklah, B. Hammouti and A. Aouniti, Appl. Surf. Sci.,
2006, 252, 6236–6242.
19 S. A. Umoren, O. Ogbobe and I. O. Igwe, Corros. Sci., 2008, 50,
1998–2006.
20 S. A. Umoren, Y. Li and F. H. Wang, Corros. Sci., 2010, 52,
1777–1786.
21 L. G. Qiu, Y. Wu and Y. M. Wang, Corros. Sci., 2008, 50, 576–
582.
22 E. E. Oguzie, Y. Li and F. H. Wang, Electrochim. Acta, 2007,
52, 6966–6988.
23 E. E. Oguzie, Y. Li and F. H. Wang, J. Colloid Interface Sci.,
2007, 310, 90–98.
24 C. Jeyaprabha, S. Sathiyanarayanan and G. Venkatachari,
Electrochim. Acta, 2006, 51, 4080–4088.
25 X. M. Li, L. B. Tang and H. C. Liu, Mater. Lett., 2008, 62,
2321–2324.
4 Conclusions
Two kinds of quinoline quaternary ammonium salt, 1 and 2,
have been synthesized and characterized. Several methods have
been employed to evaluate and compare the effectiveness of 1
and 2 under the same conditions. The detected differences in
inhibition behavior highlight the cooperative effect of the
counterions. Several interesting results are summarized as
follows:
(1) According to the results of potentiodynamic polarization,
electrochemical impedance, gravimetric, and SEM studies, both
inhibitors 1 and 2 displayed good corrosion inhibition effects
for mild steel in acidic HCl solution, but a better performance
was observed in the presence of 1.
(2) The higher inhibition efficiency of 1 compared to 2 dis-
played under the same conditions highlights that the coun-
terion can display a synergistic effect in the inhibition process.
(3) The fact that the thermodynamic parameters and acti-
vation parameters are in agreement with the observed inhibi-
tion efficiency provides evidence that the counterions can affect
the interactions between organic cations and the metal surface,
as well as the stability of the protective lm.
(4) The counterions can synergistically improve the inhibi-
tion performance of the inhibitor, in the order of Brꢀ > Clꢀ,
which can be explained by the co-adsorption effect between the
counterions and organic cations.
Acknowledgements
26 A. Khamis, M. M. Saleh and M. I. Awad, Corros. Sci., 2013, 66,
343–349.
27 F. Diaba, C. L. Houerou and M. Grignon-Dubois, J. Org.
Chem., 2000, 65, 907–910.
28 F. M. Moghaddam, Z. Mirjafary and H. Saeidian,
Tetrahedron, 2010, 66, 3678–3681.
The Applied Basic Research Funds (2011D-4603-0102, 2011A-
4208) of China National Petroleum Corporation (CNPC),
National Support Fund (2011BAE25B04) are gratefully
acknowledged.
29 Z. Tao, S. Zhang and W. Li, Corros. Sci., 2009, 51, 2588–2595.
30 X. H. Li, S. D. Deng and G. N. Mu, Corros. Sci., 2008, 50, 420–
430.
References
1 R. A. Prabhu, T. V. Venkatesha and A. V. Shanbhag, Mater. 31 M. Sahin, S. Bilgic and H. Yılmaz, Appl. Surf. Sci., 2002, 195,
Chem. Phys., 2008, 108, 283–289. 1–7.
2 H. H. Uhlig and R. W. Revie, Corrosion and corrosion Control, 32 K. F. Khaled and N. Hackenman, Electrochim. Acta, 2004, 49,
Wiely, New York, 1985.
485–495.
3 G. Trabanelli, Corrosion, 1991, 47, 410–419.
4 V. S. Sastri, Green Corrosion Inhibitors: Theory and Practice,
John Wiely and Sons, New York, 1998.
5 J. Aljourani, K. Raeissi and M. A. Golozar, Corros. Sci., 2009,
51, 1836–1843.
33 H. Keles, M. Keles and I. Dehri, Colloids Surf., A, 2008, 320,
138–145.
34 M. Bouklah, B. Hammouti and A. Aouniti, Appl. Surf. Sci.,
2006, 252, 6236–6242.
35 T. P. Hoar and R. P. Khera, Proceedings 1st Europ Symp. on
corrosion inhibitors, Ferrara, Italy, 1960, p. 73.
6 M. L. Zheludkevich, K. A. Yasakau and S. K. Poznyak, Corros.
Sci., 2005, 47, 3368–3383.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 4716–4726 | 4725