3
038
2
3
. Miranda, L. D.; Cruz-Almanza, R.; Pavón, M.; Alva, E.; Muchowski, J. M. Tetrahedron Lett. 1999, 40, 7153–7157.
. (a) Ryu, I.; Kuriyama, H.; Minakata, S.; Komatsu, M.; Yoon, J.-Y.; Kim, S. J. Am. Chem. Soc. 1999, 121, 12190. (b) Caddick,
S.; Aboutayab, K.; West, R. I. J. Chem. Soc., Chem. Commun. 1995, 1353–1354. (c) Caddick, S.; Aboutayab, K.; Jenkins, K.;
West, R. I. J. Chem. Soc., Perkin Trans. 1 1996, 675–682. (d) Caddick, S.; Aboutayab, K.; West, R. I. Synlett 1993, 231–232.
(e) Aldabbagh, F.; Bowman, R. Tetrahedron Lett. 1997, 21, 3793–3794. (f) Aldabbagh, F.; Bowman, R. Tetrahedron 1999,
5
5, 4109–4122. (g) Antonio, Y.; De la Cruz, E.; Galeazzi, E.; Guzman, A.; Bray, B. L.; Greenhouse, R.; Kurz, L. J.; Lusting,
D. A.; Maddox, M. L.; Muchowski, J. M. Can. J. Chem. 1994, 72, 15
4. Franco, F.; Greenhouse, R.; Muchowski, J. M. J. Org. Chem. 1982, 47, 1682–1988.
5
. Typical procedure: A benzene solution 0.02 M of methylsulfonylpyrrole (1 equiv.), n-Bu SnH (0.4 equiv.) and AIBN (0.4
3
equiv.) under 80 atm of CO was heated at 95–100°C for 1 h. After this time the autoclave was cooled to room temperature
and another 0.4 equiv. of n-Bu SnH and 0.4 equiv. of AIBN was added, and heated at 95–100° for 1 h under 80 atm of CO.
3
This process was repeated until no starting material was present. The reaction was monitored by TLC analysis. The autoclave
was cooled and the solvent removed under reduced pressure and the residue partitioned between hexane and acetonitrile.
The polar layer was washed with hexane (five times). After, the solvent was evaporated and the crude product was purified
by flash column chromatography (Hex-EtOAc). Selected spectral data of final products: compound 12a: IR (CHCl ):νmax
3
−
1
1
(
1
cm ) 1695.4, 2925.9, 2958.7; H NMR (CDCl
3
, 300 MHz): δ 3.09 (t, 2H, J=6.3 Hz), 4.31 (t, 2H, J=6.3 Hz), 6.52 (dd,
H, J7,6=4.05, J6,5=2.25 Hz), 6.73 (dd, 1H, J7.6=4.05, J7,5=1.05 Hz), 7.04 (dd, 1H, J7,5=1.05, J6,5=2.25 Hz); EM (IE) m/z:
):νmax (cm ) 1153.3, 1315.4, 2854.5, 2927.8, 2958.7; H NMR (CDCl , 200
3
MHz): δ 2.56 (q, 2H, J=7.25 Hz), 2.88 (t, 2H, J=7.4 Hz), 3.07 (s, 3H), 4.19 (t, 2H, J=7.14 Hz), 5.92 (d, 1H, J=3.89 Hz), 6.87
):νmax (cm ) 1694.8, 2856.4, 2889.2, 2873.8,
, 200 MHz): δ 2.28 (q, 2H, J=6.0 Hz), 2.6 (t, 2H, J=6.35 Hz), 4.12 (t, 2H, J=5.84 Hz), 6.26
dd, 1H, J8,7=4.1, J7,6=2.38 Hz), 6.86 (dd, 1H, J7.6=2.38, J8.6=1.56 Hz), 7.02 (dd, 1H, J8,7=4.1, J8,6=1.56 Hz); EM (IE) m/z:
+
−1
1
M =121 (100%). Compound 14: IR (CHCl
3
+
−1
(
2
(
d, 1H, J=3.89 Hz); EM (IE) m/z: M =185 (100%). Compound 15: IR (CHCl
931.7, 2962.5; H NMR (CDCl
3
1
3
+
−1
1
M =135 (100%). Compound 16 IR (CHCl
3
):νmax (cm ) 1110.9, 1334.7, 1694.8, 2856.4, 2927.8, 2960.6; H NMR (CDCl
3
,
2
1
2
00 MHz): δ 2.37 (q, 2H, J=6.22 Hz), 2.67 (s, 3H), 2.67 (t, 2H, J=6.15 Hz), 3.16 (s, 3H), 4.47 (t, 2H, J=5.85 Hz), 6.92 (d,
+
−1
H, J=4.2 Hz), 7.0 (d, 1H, J=4.2 Hz). EM: M m/z=213 (100%). Compound 12b: IR (CHCl ):νmax (cm ) 1645.8, 1695.4,
3
1
925.9, 2958.7; H NMR (CDCl
J=4.5 Hz), 7.06 (d, 1H, J=4.5 Hz); EM (IE) m/z: M =163 (100%). Compound 17: IR (CHCl
927.8, 2960.6; H NMR (CDCl
3
, 300 MHz): δ 2.50 (s, 3H,), 3.09 (t, 3H, J=5.85 Hz), 4.61 (t, 2H, J=5.85 Hz), 6.69 (d, 1H,
+
−1
3
):νmax (cm ) 1637.4, 2854.5,
1
2
3
, 300 MHz): δ 2.50 (q, 2H, J=7.35 Hz), 2.36 (s, 3H), 2.83 (t, 2H, J=7.2 Hz), 4.29 (t, 2H,
+
J=7.05 Hz), 5.88 (d, 1H, J=3.89 Hz), 6.92 (d, 1H, J=3.89 Hz); EM (IE) m/z: M =149 (60%). Compound 18: IR (CHCl
3
):νmax
−1
1
(
(
cm ) 1638.4, 1662.6, 2856.4, 2927.8, 2960.6; H NMR (CDCl
3
, 300 MHz): δ 2.28 (q, 2H, J=6.43 Hz), 2.51 (s, 3H), 2.64
+
t, 2H, J=6.22 Hz), 4.58 (t, 2H, J=5.89 Hz), 6.93 (d, 1H, J=4.38 Hz), 6.97 (d, 1H, J=4.38 Hz); EM (IE) m/z: M =177 (95%).