X. Kong et al. / Tetrahedron Letters 52 (2011) 77–79
79
FeCl3
oxy)benzene (1.11 g, 4 mmol) and 2-hexyloxyphenol (0.39 g,
2 mmol) was dissolved in CH Cl (15 ml), and was then added
dropwise into the FeCl solution over 30 min at 0 °C. The reaction
OR
OR
OR
OH
CH2Cl2/CH3NO2
conditions (see text)
2
2
3
was continued for 2.5 h at 0 °C. MeOH (15 ml) was added to stop
R =n-C6H13
the reaction and the mixture was washed twice with HCl (5%,
OR
OR
OR
OR
2
2 4
0 ml) and brine (20 ml). The organic layer was dried with Na SO ,
OR
OR
and the solvents removed under reduced pressure. The crude prod-
uct was purified by column chromatography (silica gel, EtOAc/light
petroleum 1:30–1:20) and afforded the two main products as col-
ourless solids; HAT6 (0.47 g, 42%), MHT6 (0.52 g, 35%).
RO
RO
RO
RO
OH
OR
Acknowledgements
H6TA (42%)
M6TH (35%)
Scheme 4. Controlled mixed cyclisation to give monohydroxytriphenylene MHT6.
We acknowledge support from the Chemical Analysis Centre at
Peking University China and the EPSRC Mass Spectrometry Service
but only trace quantities of MHT6. Variation of the reaction condi-
tions led to the further conclusion that addition of sodium carbon-
ate suppresses incorporation of the phenol and that, therefore, this
strategy to prevent hydrolysis of formed MHTn could not be em-
ployed. Fortunately, clean and efficient mixed cyclisations to give
the target MHT were achieved by reaction at 0 °C without sodium
carbonate. In these reactions there is a balance required so that a
reasonable reaction rate is achieved and the desired product (in
this case MHT6) can be isolated easily and purely. Separation of
MHTn from HATn can be achieved easily so long as MHTn is the
dominant component. However, separation of MHTn from prod-
ucts of further hydrolysis can be challenging if the latter are
formed in significant quantities. The most efficient protocol devel-
oped uses a statistical 2:1 mixture of 1,2-dihexyloxybenzene and
hexyloxyphenol at 0 °C and gives a yield of MHT6 of 35% (Scheme
(
(
(
Swansea). This work is supported by the funds from NSF China
20674004), ISTCP China (2008DFA61420), and the 111 project
B08002) of MOE, China.
References and notes
1. (a) Cammidge, A. N.; Bushby, R. J. In Handbook of Liquid Crystals; Demus, D.;
Goodby, J. W.; Gray, G. W.; Spiess, H.-W.; Vill, V., Eds.; Wiley-VCH: Weinheim,
1998, Vol. II, p 693.; (b) Kumar, S. Liq. Cryst. 2004, 31, 1037–1059.
2.
(a) Boden, N.; Movaghar, B. In Handbook of Liquid Crystals; Demus, D.; Goodby, J.
W.; Gray, G. W.; Spiess, H.-W.; Vill, V., Eds.; Wiley-VCH: Weinheim, 1998, Vol.
II, p 781.; (b) Eichhorn, H. J. Porphyrins Phthalocyanines 2000, 4, 88–102; (c)
Bushby, R. J.; Donovan, K. J.; Kreouzis, T.; Lozman, O. R. Opt. Elec. Rev 2005, 13,
269–279; (d) Iino, H.; Hanna, J.; Haarer, D. Phys. Rev. B 2005, 72. Art 193203.
3. (a) Van de Craats, A. M.; Stutzmann, N.; Bunk, O.; Nielsen, M. M.; Watson, M.;
Müllen, K.; Chanzy, H. D.; Sirringhaus, H.; Friend, R. H. Adv. Mater. 2003, 15,
495–499; (b) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolbe, A.;
Tracz, A.; Sirringhaus, H.; Pakula, T.; Müllen, K. Adv. Mater. 2005, 17,
684–689; (c) Freudenmann, R.; Behnisch, B.; Hanack, M. J. Mater. Chem. 2001,
4). Increasing the ratio of dihexyloxybenzene increases the calcu-
1
1, 1618–1624; (d) Benning, S.; Kitzerow, H.-S.; Bock, H.; Achard, M.-F. Liq.
lated yield (based on the limiting reagent) but decreases both the
real yield (based on the mass of MHT6 product for equivalent
scales) and the efficiency of isolation.
Cryst. 2000, 27, 901–906; (e) Hassheider, T.; Benning, S. A.; Kitzerow, H.-S.;
Achard, M.-F.; Bock, H. Angew. Chem., Int. Ed. 2001, 40, 2060–2063; (f) Seguy, I.;
Destruel, P.; Bock, H. Synth. Met. 2000, 111, 15–18; (g) Schmidt-Mende, L.;
Fechtenkotter, A.; Müllen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science
In conclusion, we have developed an optimized protocol for
convenient preparation and isolation of monohydroxy-pentaalk-
oxytriphenylenes (MHTs) using a ferric chloride mediated mixed
cyclisation strategy. Performing the reaction carefully at 0 °C pro-
vides the best balance in the reaction such that cyclisation pro-
ceeds at a reasonable rate but further hydrolysis of the MHT
product is minimized. The protocol is reproducible and, therefore
gives easy access to these important intermediates.
2
001, 293, 1119–1122; (h) Mori, H.; Itoh, Y.; Nishuira, Y.; Nakamura, T.;
Shinagawa, Y. Jpn. J. Appl. Phys. 1997, 36, 143–147; (i) Kawata, K. Chem. Rec.
002, 2, 59–80.
4. Kumar, S. Liq. Cryst. 2005, 32, 1089.
2
5.
(a) Boden, N.; Borner, R. C.; Bushby, R. J.; Cammidge, A. N.; Jesudason, M. V. Liq.
Cryst. 1993, 15, 851–858; (b) Boden, N.; Bushby, R. J.; Cammidge, A. N. J. Chem.
Soc., Chem. Commun. 1994, 465; (c) Boden, N.; Bushby, R. J.; Cammidge, A. N. J.
Am. Chem. Soc. 1995, 117, 924.
6.
7.
8.
Cammidge, A. N.; Gopee, H. J. Mater. Chem. 2001, 11, 2773.
Cammidge, A. N. Philos. Trans. R. Soc. London, Ser. A 2006, 364, 2697.
Cammidge, A. N.; Chausson, C.; Gopee, H.; Li, J.; Hughes, D. L. Chem. Commun.
2009, 7375–7377.
2
. Experimental procedure
9.
Kumar, S.; Lakshmi, B. Tetrahedron Lett. 2005, 46, 2603–2605.
1
0. Schulte, J. L.; Laschat, S.; Vill, V.; Nishikawa, E.; Finkelmann, H.; Nimtz, M. Eur. J.
FeCl
Cl
3
(3.24 g, 19.8 mmol) was dissolved in a mixed solvent of
(20 ml) and CH NO (2 ml). The mixture of 1,2-bis(hexyl-
Org. Chem. 1998, 2499–2506.
CH
2
2
3
2
11. Pal, S. K.; Bisoyi, H. K.; Kumar, S. Tetrahedron 2007, 63, 6874–6878.