Highly Solid-State Emissive Pyridinium-Substituted Tetraphenylethylene Salts
1
92.2% yield. M.p. 153.2–154.0 °C; H NMR (400 MHz, DMSO-d6, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.18 (m, 5H), 7.00 (d, J = 7.5 Hz, 2H),
δ): 8.94 (d, J = 6.8 Hz, 2H), 8.43 (d, J = 7.0 Hz, 2H), 7.91 (d, J = 6.94 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.72 (m, 4H), 4.29
8.4 Hz, 2H), 7.18 (m, 5H), 7.00 (d, J = 6.6 Hz, 2H), 6.94 (d, J = (s, 3H), 3.68 (s, 6H). 13C NMR (75 MHz, DMSO-d6, δ): 158.6, 158.4,
8.6 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H), 6.72 (m, 4H), 4.29 (s, 3H), 153.9, 148.6, 145.9, 143.8, 142.1, 138.0, 135.7, 132.6, 132.5,
3.68 (s, 6H). 13C NMR (100 MHz, CDCl3, δ): 158.8, 158.6, 155.8, 131.3, 131.2, 128.6, 128.0, 127.1, 124.0, 113.9, 113.7, 100.0,
149.7, 145.5, 143.5, 142.8, 137.5, 135.7, 135.6, 133.0, 132.7, 55.4, 47.4; ESI m/z: 484 [M+]; Anal. calcd for C34H30F6NO2Sb: C
131.4, 130.6, 128.1, 127.3, 126.7, 124.3, 113.5, 113.2, 55.3, 56.69, H 4.20, N 1.94; found: C, 56.87; H, 4.42; N, 2.11.
55.2, 48.6; ESI m/z: 484 [M+]; Anal. calcd for C34H30INO2: C 66.78,
H 4.94, N 2.29; found: C 66.90, H 5.16, N 2.40.
Compound 7: Yield: 96.4%. M.p. 130.4–131.6 °C; 1H NMR
(300 MHz, DMSO-d6, δ) 8.94 (d, J = 6.5 Hz, 2H), 8.43 (d, J = 6.5
Compound 2: Silver bis(trifluoromethanesulfonyl)imide (0.15 g, Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.18 (m, 5H), 7.00 (d, J = 7.5 Hz,
0.39 mmol) in 3 mL of deionized water was added to a solution of 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.72 (t, J =
compound 1 (0.2 g, 0.33 mmol) in methanol and the mixture was 9.4 Hz, 4H), 4.29 (s, 3H), 3.68 (s, 6H). 13C NMR (100 MHz, CDCl3,
stirred for 2 hours at room temperature. The solution was poured δ): 158.8, 158.6, 156.0, 149.7, 144.8, 143.5, 142.7, 137.6,
into water, extracted with dichloromethane and the organic phase 135.7, 135.6, 133.0, 132.7, 131.5, 130.6, 128.1, 127.3, 126.7,
was washed with brine. The organic layer was dried over anhydrous 124.3, 113.5, 113.2, 55.2, 47.7; ESI m/z: 484 [M+]; Anal. calcd for
Na2SO4, filtered and evaporated. Then, compound 2 (0.24 g, 0.31 C34H30F6NO2P: C 64.86, H 4.80, N 2.22; found: C 64.72, H 4.64, N
mmol) was obtained as an orange red solid in 96.2% yield. M.p. 2.30.
1
85.5–87.0 °C; H NMR (300 MHz, DMSO-d6, δ) 8.94 (d, J = 6.5 Hz,
2H), 8.43 (d, J = 6.5 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.18 (m, 5H),
7.00 (d, J = 7.5 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz,
2H), 6.72 (m, 4H), 4.29 (s, 3H), 3.68 (s, 6H). 13C NMR (100 MHz,
Supporting Information
CDCl3, δ): 158.8, 158.5, 156.3, 149.8, 144.8, 143.4, 142.8, 137.5,
135.6, 135.5, 133.0, 132.7, 132.6, 131.4, 130.4, 128.1, 127.2,
126.7, 124.4, 121.4, 118.2, 113.4, 113.1, 55.1, 47.6; ESI m/z:
484 [M+]; Anal. calcd for C36H30F6N2O6S2: C 56.54, H 3.95, N 3.66,
S 8.39; found: C 56.55, H 4.21, N 3.48, S 8.30.
Supporting Information is available from the Wiley Online Library
or from the author.
Compounds 3, 4, 5, 6 and 7 were synthesized and purified
similarly as for compound 2 with corresponding silver salts.
Compound 3: Yield: 98.7%. M.p. 136.0–137.5 °C; 1H NMR
(300 MHz, DMSO- d6, δ) 8.94 (d, J = 6.5 Hz, 2H), 8.43 (d, J =
6.5 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H), 7.18 (m, 5H), 7.00 (d, J =
7.5 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.72
(m, 4H), 4.29 (s, 3H), 3.68 (s, 6H). 13C NMR (75 MHz, CDCl3, δ):
158.7, 158.5, 155.8, 149.6, 145.1, 143.5, 142.6, 137.5, 135.6,
135.5, 132.9, 132.7, 132.6, 131.4, 130.6, 128.1, 127.3, 126.6,
124.3, 113.4, 113.1, 55.2, 55.1, 47.9; ESI m/z: 484 [M+]; Anal.
calcd for C34H30ClNO6: C 69.92, H 5.18, N 2.40; found: C 69.72, H
2.28, N 5.18.
Compound 4: Yield: 95.7%. M.p. 128.7–129.2 °C; 1H NMR
(300 MHz, DMSO-d6, δ) 8.94 (d, J = 6.5 Hz, 2H), 8.43 (d, J = 6.5 Hz,
2H), 7.90 (d, J = 8.4 Hz, 2H), 7.18 (m, 5H), 7.00 (d, J = 7.5 Hz, 2H),
6.94 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.72 (m, 4H), 4.29
(s, 3H), 3.68 (s, 6H).13C NMR (100 MHz, CDCl3, δ): 158.8, 158.6,
155.8, 145.2, 142.8, 135.7, 133.0, 132.8, 132.7, 131.5, 128.2,
127.3, 126.8, 124.3, 113.5, 113.2, 55.3, 55.2, 47.8. ESI m/z: 484
[M+]; Anal. calcd for C34H30BF4NO2: C 71.47, H 5.29, N 2.45; found:
C 71.02, H 5.15, N 2.37.
Compound 5: Yield: 94.3%. M.p. 110.4–111.6°C; 1H NMR
(300 MHz, DMSO-d6, δ) 8.94 (d, J = 6.5 Hz, 2H), 8.43 (d, J = 6.7 Hz,
2H), 7.90 (d, J = 8.4 Hz, 2H), 7.18 (m, 5H), 7.00 (d, J = 7.1 Hz, 2H),
6.94 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 6.72 (m, 4H), 4.29
(s, 3H), 3.68 (s, 6H). 13C NMR (75 MHz, CDCl3, δ): 158.7, 158.5,
155.9, 149.7, 145.2, 143.4, 142.7, 137.5, 135.6, 135.5, 133.0,
132.7, 132.6, 131.4, 128.1, 127.2, 126.7, 124.3, 113.4, 113.1,
55.2, 55.1, 47.8; ESI m/z: 484 [M+]; Anal. calcd for C35H30F3NO5
S•0.5CH3OH: C 65.63, H 4.96, N 2.16, S 4.94; found: C 65.43, H
4.91, N 2.27, S 4.91.
Acknowledgements
This work is supported by grants from National Natural Science
Foundation of China, Ministry of Science and Technology of China
and Chinese Academy of Sciences.
[1] a) T. M. Figueira-Duarte, K. Müllen, Chem. Rev. 2011, 111, 7260;
b) H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor, G. Xu, Science 1999,
283, 1900; c) J. Chen, D. Ban, M. G. Helander, Z. H. Lu, P. Poole,
Adv. Mater. 2010, 22, 4900; d) S. P. Price, J. Henzie, T. W. Odom,
Small 2007, 3, 372.
[2] a) C. Rost, S. Karg, W. Riess, M. A. Loi, M. Murgia, M. Muccini,
Appl. Phys. Lett. 2004, 85, 1613; b) F. Cicoira, C. Santato, Adv.
Funct. Mater. 2007, 17, 3421; c) X. Wang, J. Yan, Y. Zhou, J. Pei,
J. Am. Chem. Soc. 2010, 132, 15872.
[3] a) L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou,
M. Y. Shen, I. Maxwell, E. Mazur, Nature 2003, 426, 816;
b) Q. Liao, H. B. Fu, J. N. Yao, Adv. Mater. 2009, 21, 4153;
c) J. Y. Zheng, Y. L. Yan, X. P. Wang, Y. S. Zhao, J. X. Huang,
J. N. Yao, J. Am. Chem. Soc. 2012, 134, 2880; d) Y. L. Lei, Q. Liao,
H. B. Fu, J. N. Yao, J. Am. Chem. Soc. 2010, 132, 1742; e) A. L. Pan,
D. Liu, R. B. Liu, F. F. Wang, X. Zhu, B. S. Zou, Small 2005, 1, 980;
f) C. Shi, Z. Guo, Y. Yan, S. Zhu, Y. Xie, Y. Zhao, W. Zhu, H. Tian, ACS
Appl. Mater. Interfaces 2013, 5, 192.
[4] a) X. F. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature 2003,
421, 241; b) I. D. W. Samuel, G. A. Turnbull, Chem. Rev. 2007,
107, 1272; c) Y. S. Zhao, A. D. Peng, H. B. Fu, Y. Ma, J. N. Yao, Adv.
Mater. 2008, 20, 1661.
[5] a) J. B. Birks, Photophysics of Aromatic Molecules, Wiley, London,
1970; b) S. A. Jenekhe, J. A. Osaheni, Science 1994, 265, 765.
[6] a) X. Y. Qi, H. Li, J. W. Y. Lam, X. T. Yuan, J. Wei, B. Z. Tang, H. Zhang,
Adv. Mater. 2012, 24, 4191; b) F. Mahtab, Y. Yu, J. W. Y. Lam,
J. Z. Liu, B. Zhang, P. Lu, X. X. Zhang, B. Z. Tang, Adv. Funct. Mater.
2011, 21, 1733; c) G. Yu, S. W. Yin, Y. Q. Liu, J. S. Chen, X. J. Xu,
Compound 6: Yield: 97.4%. M.p. 144.5–145.1 °C; 1H NMR
(300 MHz, DMSO-d6, δ) 8.94 (d, J = 6.5 Hz, 2H), 8.43 (d, J = 6.5 Hz,
small 2014,
DOI: 10.1002/smll.201402051
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
9