1762
T. Shibata et al. / Tetrahedron: Asymmetry 18 (2007) 1759–1762
2. (a) Soai, K.; Shibata, T.; Sato, I. Acc. Chem. Res. 2000, 33,
toluene solution, 0.20 mmol) were stirred at 0 °C for 15 min,
then aldehyde 1 (0.1 mmol) in toluene (0.4 mL) was added.
After the reaction mixture was stirred for 1 h at 0 °C, toluene
(1.5 mL) and i-Pr2Zn (1.0 mL of 1 M toluene solution,
1.0 mmol) were added and the combined mixture was stirred
for 15 min. Aldehyde 1 (0.4 mmol) in toluene (1.0 mL) was
added and the reaction mixture was stirred for additional 1 h
at 0 °C. In the same manner, toluene (9.4 mL), i-Pr2Zn
(3.8 mL of 1 M toluene solution, 3.8 mmol) and aldehyde 1
(1.60 mmol) in toluene (2.6 mL) were further added and the
reaction mixture was stirred for 1 h. The reaction was
quenched by the addition of 1 M HCl (5 mL) and satd
NaHCO3 (15 mL). The mixture was filtered using Celite, and
the filtrate was extracted with AcOEt. The extract was dried
over Na2SO4 and evaporated. Purification of the residue on
silica gel TLC gave the pure alkanol 2.
382–390; (b) Soai, K.; Shibata, T. Asymmetric amplification
and autocatalysis. In Catalytic Asymmetric Synthesis; Ojima,
I., Ed., 2nd ed.; Wiley-VCH: New York, 2000; Chapter 9,
p 699; (c) Soai, K.; Sato, I.; Shibata, T. Chem. Record 2001, 1,
321–332; (d) Soai, K.; Shibata, T.; Sato, I. Bull. Chem. Soc.
Jpn. 2004, 77, 1063–1073; (e) Soai, K.; Kawasaki, T. Chirality
2006, 18, 469–478; (f) Soai, K.; Kawasaki, T. Shokubai
(Catalysts & Catalysis) 2006, 48, 346–352; (g) Soai, K.; Sato,
I.; Kawasaki, T. In The Chemistry of Organozinc Compounds;
Rappoprt, Z., Marek, I., Eds.; John Wiley & Sons, 2006.
3. (a) Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Nature 1995,
378, 767–768; (b) Shibata, T.; Yonekubo, S.; Soai, K. Angew.
Chem., Int. Ed. 1999, 38, 659–661; (c) Sato, I.; Urabe, H.;
Ishiguro, S.; Shibata, T.; Soai, K. Angew. Chem., Int. Ed.
2003, 42, 315–317; (d) Lutz, F.; Kawasaki, T.; Soai, K.
Tetrahedron: Asymmetry 2006, 17, 486–490.
4. For the mechanism of asymmetric autocatalysis: (a) Sato, I.;
Omiya, D.; Igarashi, H.; Kato, K.; Ogi, Y.; Tsukiyama, K.;
Soai, K. Tetrahedron: Asymmetry 2003, 14, 975–979; (b)
Gridnev, I. D.; Serafimov, J. M.; Brown, J. M. Angew. Chem.,
Int. Ed. 2004, 43, 4884–4887; (c) Blackmond, D. G. Proc.
Natl. Acad. Sci. 2004, 101, 5732–5736; (d) Buhse, T.
Tetrahedron: Asymmetry 2003, 14, 1055–1061; (e) Islas, J.
R.; Lavabre, D.; Grevy, J. M.; Lamoneda, R. H.; Cabrera, H.
R.; Micheau, J.-C.; Buhse, T. Proc. Natl. Acad. Sci. 2005,
102, 13743–13748; (f) Saito, Y.; Hyuga, H. J. Phys. Soc. Jpn.
2004, 73, 33–35; (g) Lente, G. J. Phys. Chem. A 2005, 109,
11058–11063; (h) Micskei, K.; Pota, G.; Caglioti, L.; Palyi, G.
J. Phys. Chem. A 2006, 110, 5982–5984; (i) Lavabre, D.;
Micheau, J.-C. J. Phys. Chem. A 2007, 111, 281–286.
5. Shibata, T.; Yamamoto, J.; Matsumoto, N.; Yonekubo, S.;
Osanai, S.; Soai, K. J. Am. Chem. Soc. 1998, 120, 12157–12158.
6. Asymmetric autocatalysis in the presence of chiral initiators:
(a) Soai, K.; Osanai, S.; Kadowaki, K.; Yonakubo, S.;
Shibata, T.; Sato, I. J. Am. Chem. Soc. 1999, 121, 11235–
11236; (b) Sato, I.; Omiya, D.; Saito, T.; Soai, K. J. Am.
Chem. Soc. 2000, 122, 11739–11740; (c) Sato, I.; Kadowaki,
K.; Soai, K. Angew. Chem., Int. Ed. 2000, 39, 1510–1512; (d)
Sato, I.; Yamashima, R.; Kadowaki, K.; Yamamoto, J.;
Shibata, T.; Soai, K. Angew. Chem., Int. Ed. 2001, 40, 1096–
1098; (e) Sato, I.; Matsueda, Y.; Kadowaki, K.; Yonekubo,
S.; Shibata, T.; Soai, K. Helv. Chim. Acta 2002, 85, 3383–
3387; (f) Sato, I.; Ahno, A.; Aoyama, Y.; Kasahara, T.; Soai,
K. Org. Biomol. Chem. 2003, 1, 244–246; (g) Kawasaki, T.;
Ishikawa, K.; Sekibata, H.; Sato, I.; Soai, K. Tetrahedron
Lett. 2004, 45, 7939–7941; (h) Kawasaki, T.; Shimizu, M.;
Suzuki, K.; Sato, I.; Soai, K. Tetrahedron: Asymmetry 2004,
15, 3699–3701; (i) Kawasaki, T.; Sato, M.; Ishiguro, S.; Saito,
T.; Morishita, Y.; Sato, I.; Nishino, H.; Inoue, Y.; Soai, K. J.
Am. Chem. Soc. 2005, 127, 3274–3275; (j) Kawasaki, T.; Jo,
K.; Igarashi, H.; Sato, I.; Nagano, M.; Koshima, H.; Soai, K.
Angew. Chem., Int. Ed. 2005, 44, 2774–2777; (k) Lutz, F.;
Igarashi, T.; Kawasaki, T.; Soai, K. J. Am. Chem. Soc. 2005,
127, 12206–12207; (l) Kawasaki, T.; Suzuki, K.; Hatase, K.;
Otsuka, M.; Koshima, H.; Soai, K. Chem. Commun. 2006,
1869–1871; (m) Kawasaki, T.; Suzuki, K.; Licandro, E.;
Bossi, A.; Maiorana, S.; Soai, K. Tetrahedron: Asymmetry
2006, 17, 2050–2053; (n) Kawasaki, T.; Tanaka, H.; Tsuts-
umi, T.; Kasahara, T.; Sato, I.; Soai, K. J. Am. Chem. Soc.
2006, 128, 6032–6033; (o) Kawasaki, T.; Hatase, K.; Fujii, Y.;
Jo, K.; Soai, K.; Pizzarello, S. Geochim. Cosmochim. Acta
2006, 70, 5395–5402; (p) Kawasaki, T.; Suzuki, K.; Shimizu,
M.; Ishikawa, K.; Soai, K. Chirality 2006, 18, 479–482; (q)
Kawasaki, T.; Omine, T.; Sato, M.; Morishita, Y.; Soai, K.
Chem. Lett. 2007, 36, 30–31.
8. When the alkylation of the benzaldehyde was carried out
using i-Pr2Zn in the presence of chiral 2-butanol 3, only a
trace amount of isopropylated product could be obtained
while asymmetric induction could not be detected. In order to
determine the stereochemical correlation between the chiral
initiator and alkylated product, asymmetric autocatalysis is
necessary for amplification of ee.
9. Compound (S)-5 with 90% ee was prepared by asymmetric
isopropylation of benzaldehyde. See: Soai, K.; Hayase, T.;
Takai, K.; Sugiyama, T. J. Org. Chem. 1994, 59, 7908–7909.
10. (S)-(À)-6 of 16% ee was prepared by asymmetric reduction of
2,2-dimethyl-1-phenylpropan-1-one. See: Clark, D. R.;
Moscher, H. S. J. Org. Chem. 1970, 35, 1114–1118.
11. Commercially available DL-7 was resolved into enantiomers
by HPLC on a chiral stationary phase (Daicel Chiralcel OD).
12. The ee was amplified to >99.5% ee by further asymmetric
autocatalysis using the obtained pyrimidyl alkanol as a chiral
catalyst (Ref. 3c).
13. Both Taft’s steric parameter and the A-value show that
phenyl is bulkier than the isopropyl group. These results
imply that the total effect of steric and electronic factors
determined ‘bulkiness’ in the enantioselective alkylation using
diisopropylzinc and the estimation of bulkiness discrimina-
tion is difficult using conventional steric values but the
present system could achieve it.
14. DL-8 was prepared according to the literature. See: (a) Marco,
´
J. A.; Carda, M.; Rodrıguez, S.; Castillo, E.; Kneeteman, M.
N. Tetrahedron 2003, 59, 4085–4101; And it was resolved into
two enantiomers by HPLC on a chiral stationary phase
(Daicel Chiralcel OD). See also: (b) Dittmer, D. C.; Discor-
dia, R. P.; Zhang, Y.; Murphy, C. K.; Kumar, A.; Petio, A.
S.; Wang, Y. J. Org. Chem. 1993, 58, 718–731.
15. DL-9 was prepared according to the literature. See: Briot, A.;
Baehr, C.; Brouillard, R.; Wagner, A.; Mioskowski, C. J.
Org. Chem. 2004, 69, 1374–1377, Then, it was resolved into
two enantiomers by HPLC on a chiral stationary phase
(Daicel Chiralcel OD).
16. (S)-10 with 52% ee was synthesized by asymmetric reduction
of iso-valerophenone according to the literature in Ref. 10.
DL-10 was prepared by BH3-reduction of iso-valerophenone.
17. DL-11 was prepared by BH3-reduction of 3,3-dimethyl-1-
phenylbutan-1-one and it was resolved into enantiomers by
HPLC using a chiral column (Daicel Chiralcel OD). Com-
pound (À)-11 was determined to be S-isomer using modified
Mosher method. See: Ohtani, I.; Kusumi, T.; Kashman, Y.;
Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096.
18. DL-Neopentyl(phenylmethyl)methanol 12 was prepared
according to the literature in Ref. 14a and DL-12 was resolved
into (À)- and (+)-isomers by HPLC using a chiral column
(Daicel Chiralcel OD). (À)-Isomer was determined to be (S)-
isomer using modified Mosher method. See the literature in
Ref. 17.
7. In a typical experiment, a secondary alcohol (0.02 mmol, ca.
10% ee) in a toluene (0.6 mL) and i-Pr2Zn (0.2 mL of 1 M