1900509
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 25, NO. 6, NOVEMBER/DECEMBER 2019
interpretation of A and B, the maxima of A occur at the [21] D. Jung et al., “Highly reliable low-threshold InAs quantum dot lasers
on on-axis (001) Si with 87% injection efficiency,” ACS Photon., vol. 5,
resonance wavelength of the resonators while the maxima of
no. 3, pp. 1094–1100, 2017.
B are detuned to the red side of each resonance peak. Since
F is dominated by B, the maxima of F are detuned from the
resonance peaks of the ring resonators as well.
Accessed: Apr. 18, 2018.
[23] D. T. Cassidy, “Technique for measurement of the gain spectra of
semiconductor diode lasers,” J. Appl. Phys., vol. 56, no. 11, pp. 3096–
3099, 1984.
[24] W. W. Chow and S. W. Koch, “Theory of semiconductor quantum-dot
laser dynamics,” IEEE J. Quantum Electron., vol. 41, no. 4, pp. 495–505,
Apr. 2005.
[25] H. Schneider, W. Chow, and S. W. Koch, “Anomalous carrier-induced
dispersion in quantum-dot active media,” Phys. Rev. B, vol. 66, no. 4,
2002, Art. no. 041310.
[26] A. Ukhanov, A. Stintz, P. Eliseev, and K. Malloy, “Comparison of the
carrier induced refractive index, gain, and linewidth enhancement factor
in quantum dot and quantum well lasers,” Appl. Phys. Lett., vol. 84, no. 7,
pp. 1058–1060, 2004.
ACKNOWLEDGMENT
The authors are thankful to Frédéric Grillot for meaningful
discussions and M. J. Kennedy for device fabrication. Stella
Meng and Yoyo Meng offered a great deal of moral support
throughout the duration of this project.
[27] K. J. Vahala and C. Zah, “Effect of doping on the optical gain and the
spontaneous noise enhancement factor in quantum well amplifiers and
lasers studied by simple analytical expressions,” Appl. Phys. Lett., vol. 52,
no. 23, pp. 1945–1947, 1988.
[28] J. Duan et al., “Semiconductor quantum dot lasers epitaxially grown on
silicon with low linewidth enhancement factor,” Appl. Phys. Lett., vol. 112,
and Photonic Integrated Circuits. Hoboken, NJ, USA: Wiley, 2012,
vol. 218.
REFERENCES
[1] M. W. Fleming and A. Mooradian, “Fundamental line broadening of
single-mode (GaAl)As diode lasers,” Appl. Phys. Lett., vol. 38, no. 7,
pp. 511–513, 1981.
[2] C. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J.
Quantum Electron., vol. QE-18, no. 2, pp. 259–264, Feb. 1982.
[3] K. Vahala and A. Yariv, “Semiclassical theory of noise in semiconductor
lasers—Part II,” IEEE J. Quantum Electron., vol. QE-19, no. 6, pp. 1102–
1109, Jun. 1983.
[4] R. Tkach and A. Chraplyvy, “Regimes of feedback effects in 1.5 μm
distributed feedback lasers,” J. Lightw. Technol., vol. LT-4, no. 11,
pp. 1655–1661, Nov. 1986.
[5] J. Helms and K. Petermann, “A simple analytic expression for the stable
operation range of laser diodes with optical feedback,” IEEE J. Quantum
Electron., vol. 26, no. 5, pp. 833–836, May 1990.
[32] J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with
optical feedback: Theory and experiment,” IEEE J. Quantum Electron.,
vol. 28, no. 1, pp. 93–108, Jan. 1992.
[33] J. O. Binder and G. D. Cormack, “Mode selection and stability of a
semiconductor laser with weak optical feedback,” IEEE J. Quantum
Electron., vol. 25, no. 11, pp. 2255–2259, Nov. 1989.
[6] J. Helms and K. Petermann, “Microwave modulation of laser diodes with
opticalfeedback,”J. Lightw. Technol., vol. 9, no. 4, pp. 468–476, Apr. 1991.
[7] R. Lang and K. Kobayashi, “External optical feedback effects on
semiconductor injection laser properties,” IEEE J. Quantum Electron.,
vol. QE-16, no. 3, pp. 347–355, Mar. 1980.
[8] W. Rideout et al., “Measurement of the carrier dependence of differential
gain, refractive index, and linewidth enhancement factor in strained-layer
quantum well lasers,” Appl. Phys. Lett., vol. 56, no. 8, pp. 706–708, 1990.
[9] U. Schwarz et al., “Optical gain, carrier-induced phase shift, and linewidth
enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett.,
vol. 83, no. 20, pp. 4095–4097, 2003.
[10] M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor
lasers—An overview,” IEEE J. Quantum Electron., vol. QE-23, no. 1,
pp. 9–29, Jan. 1987.
[11] I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,”
Optica, vol. 3, no. 4, pp. 414–426, 2016.
[12] Z. Newman et al., “Photonic integration of an optical atomic clock,” 2018,
arXiv:1811.00616.
[34] C. Hantschmann et al., “Understanding the bandwidth limitations in
monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon,” J. Lightw.
Technol., vol. 37, no. 3, pp. 949–955, Feb. 2019.
[35] F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain
compression and above-threshold linewidth enhancement factor in 1.3 μm
InAs-GaAs quantum dot lasers,” IEEE J. Quantum Electron., vol. 44,
no. 10, pp. 946–951, Oct. 2008.
[36] D. Inoue et al., “Directly modulated 1.3 μm quantum dot lasers
epitaxially grown on silicon,” Opt. Express, vol. 26, no. 6, pp. 7022–7033,
2018.
[37] M. Ishida et al., “Effect of carrier transport on modulation bandwidth of
1.3-μ m InAs/GaAs self-assembled quantum-dot lasers,” in Proc. 22nd
IEEE Int. Semicond. Laser Conf, 2010, pp. 174–175.
[13] Y. Arakawa, K. Vahala, A. Yariv, and K. Lau, “Reduction of the spectral
linewidth of semiconductor lasers with quantum wire effects-spectral
properties of GaAlAs double heterostructure lasers in high magnetic
fields,” Appl. Phys. Lett., vol. 48, no. 6, pp. 384–386, 1986.
[14] Y. Arakawa, K. Vahala, and A. Yariv, “Quantum noise and dynamics in
quantum well and quantum wire lasers,” Appl. Phys. Lett., vol. 45, no. 9,
pp. 950–952, 1984.
[15] D. Bimberg et al., “InGaAs–GaAs quantum-dot lasers,” IEEE J. Sel.
Topics Quantum Electron., vol. 3, no. 2, pp. 196–205, Apr. 1997.
[16] W. W. Chow and F. Jahnke, “On the physics of semiconductor quantum
dots for applications in lasers and quantum optics,” Progress Quantum
Electron., vol. 37, no. 3, pp. 109–184, 2013.
[38] P. J. Thijs, L. F. Tiemeijer, P. Kuindersma, J. Binsma, and T. Van
Dongen, “High-performance 1.5 μm wavelength InGaAs–InGaAsP
strained quantum well lasers and amplifiers,” IEEE J. Quantum Electron.,
vol. 27, no. 6, pp. 1426–1439, Jun. 1991.
[39] Y. Hirayama, M. Morinaga, N. Suzuki, and M. Nakamura, “Extremely
reduced nonlinear k-factor in high-speed strained layer multiquantum well
DFB lasers,” Electron. Lett., vol. 27, no. 10, pp. 875–876, 1991.
[40] P. Blood, “Quantum efficiency of quantum dot lasers,” IEEE J. Sel. Topics
Quantum Electron., vol. 23, no. 6, Nov./Dec. 2017, Art. no. 1900608.
[41] H. Huang et al., “Analysis of the optical feedback dynamics in InAs/GaAs
quantum dot lasers directly grown on silicon,” JOSA B, vol. 35, no. 11,
pp. 2780–2787, 2018.
[17] D. Jung et al., “Impact of threading dislocation density on the lifetime of
InAs quantum dot lasers on Si,” Appl. Phys. Lett., vol. 112, no. 15, 2018,
Art. no. 153507.
[42] R. Kazarinov and C. Henry, “The relation of line narrowing and chirp
reduction resulting from the coupling of a semiconductor laser to passive
resonator,” IEEE J. Quantum Electron., vol. QE-23, no. 9, pp. 1401–1409,
Sep. 1987.
[43] C. T. Santis, S. T. Steger, Y. Vilenchik, A. Vasilyev, and A. Yariv, “High-
coherence semiconductor lasers based on integral high-q resonators in
hybrid Si/III-V platforms,” Proc. Nat. Acad. Sci., vol. 111, no. 8, pp. 2879–
2884, 2014.
[18] O. Shchekin and D. Deppe, “1.3 μm InAs quantum dot laser with To
=
161 K from 0 to 80 ◦C,” Appl. Phys. Lett., vol. 80, no. 18, pp. 3277–3279,
2002.
[19] O. Shchekin and D. Deppe, “The role of p-type doping and the density
of states on the modulation response of quantum dot lasers,” Appl. Phys.
Lett., vol. 80, no. 15, pp. 2758–2760, 2002.
[20] Z. Zhang et al., “Effects of modulation p doping in InAs quantum dot
lasers on silicon,” Appl. Phys. Lett., vol. 113, no. 6, 2018, Art. no. 061105.
[44] T. Komljenovic et al., “Widely tunable narrow-linewidth monolithically
integrated external-cavity semiconductor lasers,” IEEE J. Sel. Topics
Quantum Electron., vol. 21, no. 6, Nov./Dec. 2015, Art. no. 1501909.