J. Am. Chem. Soc. 1996, 118, 2519-2520
2519
uridine 5′-thiohydroxamic ester to obtain the 6′-(pyridin-2-yl)
thioether. Its oxidation (m-CPBA) and fluorination of the de-
rived sulfonyl-stabilized carbanion (Selectfluor) were successful.
However, attempted desulfonylation by known procedures
failed. We now have discovered that pyridin-2-yl- and espe-
cially pyrimidin-2-ylsulfonyl groups undergo cleavage from the
R-carbon atoms of carboxylic and phosphonic esters. This new
methodology was employed for the first reported synthesis of
a 6′-deoxy-6′-fluorohomonucleoside phosphonate from uridine.
Treatment of 2′,3′-O-isopropylideneuridine 5′-carboxylic
acid19 (1, Scheme 1) with isobutyl chloroformate/N-methyl-
morpholine/THF and the sodium salt of N-hydroxypyridine-2-
thione gave the N-hydroxypyridine-2-thioester. Photolysis
(tungsten light) with diethyl vinylphosphonate gave the reported
addition product 220a,b (∼60%) plus byproducts.20c,d Attempted
C6′ fluorination of thioether 2 with (diethylamino)sulfur tri-
fluoride (DAST)21a or oxidation of 2 and treatment of the
sulfoxides with DAST/SbCl321b failed. Oxidation of 2 with >2
equiv of m-CPBA gave the pyridin-2-yl sulfone 3a, which was
benzoylated at N3 to give 3b.22 Treatment of 3b with potassium
hydride generated a stabilized C6′ carbanion. Several “positive
fluorine” sources failed to give defined products, but Selectfluor
[1-(chloromethyl)-4-fluoro-1,4-diazabicyclo[2.2.2]octane bis-
Stannyl Radical-Mediated Cleavage of π-Deficient
Heterocyclic Sulfones. Synthesis of r-Fluoro Esters
and the First Homonucleoside r-Fluoromethylene
Phosphonate1
Stanislaw F. Wnuk and Morris J. Robins*
Department of Chemistry and Biochemistry
Brigham Young UniVersity, ProVo, Utah 84602-5700
ReceiVed October 19, 1995
Phosphonate derivatives of nucleosides have been studied
extensively as analogues of biologically important nucleotides.2,3
Blackburn proposed that R-fluoro and R,R-difluoro substitution
on methylenephosphonates should provide superior phosphate
ester surrogates (closer isosteric and isopolar parallels).3,4 The
bridging oxygen in di- and triphosphates has been replaced with
mono- and difluoromethylene entities,3-5 and the OH function
on phosphates has been replaced with a fluoromethyl group.6
Condensations of O5′-activated nucleosides5a and activated 5′-
monophosphates4a with (fluoromethylene)- and (difluorometh-
ylene)bis(phosphonic acids) have given di- and triphosphate
analogues with R and â pyrophosphate oxygen replaced with
CHF and CF2 units. Phosphonate homologues of nucleotides
9
(O5′ replaced with CH2,7 CHF,8 or CF2 ) are of enhanced
interest since they are not substrates for the usual phosphatases.
Established syntheses of homophosphonates with CH2 units
employed Wittig7 or Arbuzov2 chemistry. Recent reports9,10
of their CF2 analogues have utilized coupling of nucleic acid
bases with a previously synthesized R,R-difluorohomoribose
phosphonate derivative11 or a carbocyclic analogue.10 The
9-(5,5-difluoro-5-phosphonopentyl)guanine congener of acy-
clovir phosphate was found to exert potent inhibition of purine
nucleoside phosphorylase.12
(18) Lal, G. S. J. Org. Chem. 1993, 58, 2791-2796.
(19) (a) Corey, E. J.; Samuelsson, B. J. Org. Chem. 1984, 49, 4735-
4735. (b) Varma R. S.; Hogan, M. E. Tetrahedron Lett. 1992, 33, 7719-
7720.
(20) (a) Barton, D. H. R.; Ge´ro, S. D.; Quiclet-Sire, B.; Samadi, M. J.
Chem. Soc., Chem. Commun. 1989, 1000-1001. (b) Barton, D. H. R.; Ge´ro,
S. D.; Quiclet-Sire, B.; Samadi, M. Tetrahedron 1992, 48, 1627-1636. (c)
Barton, D. H. R.; Ge´ro, S. D.; Quiclet-Sire, B.; Samadi, M. J. Chem. Soc.,
Chem. Commun. 1988, 1372-1373. (d) Complete stereoselectivity20c for
C5′ modified nucleosides20a,b has been noted, but 2 was contaminated (5-
15%) by compound(s) with similar NMR signals. A 4′(S) diastereomer
should undergo parallel transformations to give parallel byproducts observed
at each stage.
R-Fluoro- and R,R-difluoromethylenephosphonates have been
prepared by Arbuzov reactions with fluorohalomethanes,13
fluorination of phosphonate-stabilized anions,14 alkylation of
[(diethoxyphosphoryl)difluoromethyl]lithium,15 and palladium-
catalyzed addition of diethyl (difluoroiodomethyl)phosphonate
to alkenes.16 Fluorinations of sulfonyl-stabilized phosphonate
carbanions with perchloryl fluoride17 and the new Selectfluor
reagent18 have been described. We employed Barton’s chain-
extension method with diethyl vinylphosphonate and a protected
(21) (a) Robins, M. J.; Wnuk, S. F. J. Org. Chem. 1993, 58, 3800-
3801. (b) Wnuk, S. F.; Robins, M. J. J. Org. Chem. 1990, 55, 4757-4760.
(22) NMR (CDCl3, unless specified). (a) Data as reported for 8c23a and
10c.23b (b) 3b: 1H NMR δ 1.25 (t, J ) 7.0 Hz, 6), 1.31 (s, 3), 1.52 (s, 3),
2.40-2.71 (m, 2), 4.10 (q, J ) 7.0 Hz, 4), 4.38-4.71 (m, 3), 4.96-5.12
(m, l), 5.58 (d, J ) 1.1 Hz, 0.5, Hl′), 5.67 (d, J ) 1.5 Hz, 0.5, Hl′), 5.83
and 5.85 (d and d, J ) 8.1 Hz, 0.5 and 0.5), 7.37 and 7.39 (d and d, 0.5
and 0.5), 7.45-8.14 (m, 8), 8.67-8.94 (m, l); HRMS (CI) m/z 664.1724
(100, MH+ [C29H35N3O11PS] ) 664.1730). (c) 4b: δ 1.24-1.35 (m, 9),
1.51 and 152 (2s, 3), 2.71-3.06 (m, 2), 4.16-4.32 (m, 4), 4.68-4.76 (m,
(1) Nucleic Acid Related Compounds. 89. Part 88: Robins, M. J.; Wilson,
J. S.; Madej, D.; Low, N. H.; Hansske, F.; Wnuk, S. F. J. Org. Chem.
1995, 60, 7902-7908.
2), 4.96 (dd, J2′-3′ ) 6.3 Hz, J2′-1′ ) 2.0 Hz, 0.5, H2′), 4.99 (dd, J2′-3′
)
(2) Engel, R. Chem. ReV. 1977, 77, 349-367.
5.9 Hz, J2′-1′ ) 2.0 Hz, 0.5, H2′), 5.48 and 5.49 (2d, 1, H1′), 5.68 and 5.71
(2dd, J5-6 ) 8.2 Hz, J5-NH ) 2.3 Hz, 1, H5), 7.19 and 7.22 (2d, 1, H6),
7.60, 7.97, 8.14, 8.79 (4m, 4), 9.06 (br s, 1); 19F NMR δ -168.2 (ddd,
JF-P ) 82.2 Hz, JF-5′,5′′ ) 30.0, 17.1 Hz, 0.5), -168.6 (ddd, JF-P ) 82.2
Hz, JF-5′,5′′ ) 29.1, 17.1 Hz), plus minor 4′(S) signals; HRMS (CI) m/z
578.1367 (100, MH+ [C22H30FN3O10PS] ) 578.1374). (d) 5b (faster
isomer): 1H NMR (D2O) δ 1.23 (t, J ) 6.9 Ηz, 6), 2.22-2.36 (m, 2), 4.03
(t, J ) 5.9 Hz, 1), 4.08-4.12 (m, 1), 4.15 (q, 4), 4.27 (t, J ) 3.9 Hz, 1),
(3) Blackburn, G. M.; Perre´e, T. D.; Rashid, A.; Bisbal, C.; Lebleu, B.
Chem. Scr. 1986, 26, 21-24.
(4) (a) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin
Trans. 1 1984, 1119-1125. (b) Blackburn, G. M.; Guo, M.-J.; Langston,
S. P.; Taylor, G. E. Tetrahedron Lett. 1990, 31, 5637-5640. (c) Blackburn,
G. M.; Langston, S. P. Tetrahedron Lett. 1991, 32, 6425-6428.
(5) (a) Davisson, V. J.; Davis, D. R.; Dixit, V. M.; Poulter, C. D. J.
Org. Chem. 1987, 52, 1794-1801. (b) Hebel, D.; Kirk, K. L.; Kinjo, J.;
Kova´cs, T.; Lesiak, K.; Balzarini, J.; De Clercq, E.; Torrence, P. F. Bioorg.
Med. Chem. Lett. 1991, 1, 357-360.
5.14 (dm, J6′-F ) 45.2 Hz, 1), 5.67 (d, J1′-2′ ) 3.3 Hz, 1), 5.76 (d, J5-6
)
8.2 Hz, 1) 7.52 (d, 1); 19F NMR (D2O) δ -203.2 (dddd, JF-P ) 78.2 Hz,
JF-6′ ) 46.1 Hz, JF-5′,5′′ ) 28.3, 10.5 Hz); HRMS (CI) m/z 397.1170 (100,
MH+ [C14H23FN2O8P] ) 397.1176). (e) 6 (from faster 5b): mp 200-210
°C dec; UV (H2O) max 262 nm (ꢀ 8200), min 231 nm (ꢀ 2100); 1H NMR
(D2O) δ 2.11-2.22 (m, 2), 4.04 (t, J ) 6.0 Hz, 1), 4.15 (q, J ) 6.2 Hz, 1),
4.25 (t, J ) 5.0 Hz, 1), 4.83 (dm J6′-F ≈ 46 Hz, 1), 5.75 (d, J1′-2′ ) 4.5
Hz, 1), 5.88 (d, J5-6 ) 8.0 Hz, l), 7.59 (d, 1); 19F NMR (NaH/D2O) δ
-200.5 (dddd, JF-P ) 61.9 Hz, JF-6′ ) 48.2 Hz, JF-5′,5′′ ) 27.3, 9.1 Hz);
HRMS (FAB) m/z 385.0194 (76, MH+ [C10H13FN2O8PNa2] ) 385.0189),
363.0370 (35, MH+ [C10H14FN2O8PNa] ) 363.0370). (f) 8a (oil): 1H NMR
similar to 8b. Anal. Calcd for C13H19NO4S: C, 54.72; H, 6.71; N, 4.91.
Found: C, 54.63; H, 6.52; N 5.09. (g) 8b: mp 50-51 °C; 1H NMR δ 0.90
(t, J ) 6.6 Hz, 3), 1.1 (t, J ) 7.1 Hz, 3), 1.28-1.51 (m, 4), 2.15-2.28 (m,
2), 4.10 (q, 2), 4.61 (dd, J ) 6.2, 8.7 Hz, 1), 7.60 (t, J ) 4.9 Hz, 1), 8.97
(d, 2). Anal. Calcd for C12H18N2O4S: C, 50.33; H, 6.34; N, 9.78. Found:
C, 50.33; H, 6.15; N, 9.60. (h) 9a (oil): 1H NMR δ 0.90 (t, J ) 6.8 Hz, 3),
1.16-1.52 (m, 7), 2.30-2.73 (m, 2), 4.31 (q, J ) 7.2 Hz, 2), 7.60 (ddd, J
) 1.4, 4.7, 7.6 Hz, 1), 7.98 (dt, J ) 1.7, 7.6 Hz, 1), 8.09 (dt, J ) 1.1 Hz,
7.8 Hz, 1), 8.73 (ddd, J ) 1.0, 1.7, 4.8 Hz, 1); 19F NMR δ -159.4 (dd, J
) 10.3, 38.5 Hz). Anal. Calcd for C13H18FNO4S: C, 51.47; H, 5.98; N,
4.62. Found: C, 51.39; H, 6.12; N, 4.51. (i) 9b (oil): 1H and 19F NMR
similar to 9a. Anal. Calcd for C12H17FN2O4S: C, 47.36; H, 5.63; N, 9.20.
Found: C, 47.57; H, 5.72; N, 9.19. (j) 2-[2H]-10c: 1H NMR same as 10c23b
except simplification at δ 1.87 and small signals (∼10%) at δ 4.86; 19F
NMR δ -193.2 (tt, JF-D ) 7.9 Hz, JF-H ) 24.9 Hz).
(6) (a) Casara, P. J.; Jund, K. C.; Clauss, A.; Nave´, J.-F.; Snyder, R. D.
Bioorg. Med. Chem. Lett. 1992, 2, 145-148. (b) Blackburn, G. M.; Guo,
M.-J. Tetrahedron Lett. 1993, 34, 149-152.
(7) Jones, G. H.; Moffatt, J. G. J. Am. Chem. Soc. 1968, 90, 5337-
5338.
(8) Synthesis of monofluoro phosphonate analogues from a sugar
precursor was presented by Blackburn et al.,3 but no final products were
reported.
(9) (a) Matulic-Adamic, J.; Usman, N. Tetrahedron Lett. 1994, 35, 3227-
3230. (b) Matulic-Adamic, J.; Haeberli, P.; Usman, N. J. Org. Chem. 1995,
60, 2563-2569.
(10) Wolff-Kugel, D.; Halzay, S. Tetrahedron Lett. 1991, 32, 6341-
6344.
(11) Berkowitz, D. B.; Eggen, M.-J.; Shen, Q.; Sloss, D. G. J. Org. Chem.
1993, 58, 6174-6176.
(12) Halazy, S.; Ehrhard, A.; Danzin, C. J. Am. Chem. Soc. 1991, 113,
315-317.
(13) Burton, D. J.; Flynn, R. M. J. Fluorine Chem. 1977, 10, 329-332.
(14) Differding, E.; Duthaler, R. O.; Krieger, A.; Ru¨egg, G. M.; Schmit,
C. Synlett 1991, 395-396.
(15) Obayashi, M.; Ito, E.; Matsui, K.; Kondo, K. Tetrahedron Lett. 1982,
23, 2323-2326.
(16) Yang, Z.-Y.; Burton, D. J. J. Org. Chem. 1992, 57, 4676-4683.
(17) Koizumi, T.; Hagi, T.; Horie, Y; Takeuchi, Y. Chem. Pharm. Bull.
1987, 35, 3959-3962.
(23) (a) Wang, Y; Jiang, Y. Synth. Commun. 1992, 22, 2287-2291. (b)
Thenappan, A.; Burton, D. J. J. Org. Chem. 1990, 55, 2311-2317.
0002-7863/96/1518-2519$12.00/0 © 1996 American Chemical Society