Organometallics
Article
one was extracted with EtOAc (3 × 5 mL). The combined organic
extracts were washed with brine (5 mL), dried over Na2SO4, filtered,
and concentrated in vacuo. The crude mixture was purified by silica gel
flash chromatography (using 90:10 hexanes/EtOAc eluent).
(GM087605). L.R. thanks the “Reg
Explora’Pro fellowship.
́
ion Rho
̂
ne-Alpes” for its
REFERENCES
■
( )-(3R,4S,E)-4-Methyl-3-phenyldec-5-en-3-ol (2a). The general
(1) (a) Clayden, J.; Greeves, N.; Warren, S.; Wothers, P. Organic
Chemistry; Oxford University Press: New York, 2001; p 889.
(b) Bruckner, R. Advanced Organic Chemistry: Reaction Mechanisms;
Academic Press: San Diego, 2002; p 315. (c) Carey, F. A.; Sundberg,
R. J. Advanced Organic Chemistry: Part A: Structure and Mechanisms,
5th ed.; Springer: New York, 2007; p 179. (d) Anslyn, E. V.;
Dougherty, D. A. Modern Physical Organic Chemistry; University
Science Books: Sausalito, CA, 2006; p 564.
procedure was applied to 1a (65 mg, 0.3 mmol) to give the title
1
compound 2a (16 mg, 63 μmol) as a colorless oil, in 21% yield. H
NMR (CDCl3, 500 MHz): δ 0.68 (t, J = 7.4 Hz, 3H), 0.79 (d, J = 6.9
Hz, 3H), 0.90 (t, J = 7.1 Hz, 3H), 1.27−1.41 (m, 4H), 1.79−1.94 (m,
3H), 2.04 (q, J = 6.7 Hz, 2H), 2.51 (apparent quintet, J = 7.5 Hz, 1H),
5.37 (ddt, J = 15.3, 8.7, 1.3 Hz, 1H), 5.54 (dt, J = 15.3, 6.7 Hz, 1H),
7.19−7.24 (m, 1H), 7.30−7.35 (m, 4H). 13C{1H} NMR (CDCl3, 125
MHz): δ 7.8, 13.9, 15.5, 22.2, 31.7, 32.4, 33.3, 47.3, 78.5, 125.9, 126.1,
127.7, 131.2, 132.9, 144.6. IR (neat): 3518 (br), 3087, 3059, 3027,
2963, 2928, 2874, 2857, 1494, 1458, 1446, 1376, 1164, 976, 907, 759,
701. HRMS (CI): m/z [C17H26O − C8H15•]+ calcd 135.0810, found
135.0810. dr = 50:1 determined by GC analysis. Determination of the
relative stereochemistry was realized by performing an ozonolysis/
NaBH4 reduction sequence and comparing with the data available for
the resulting diol in the literature.33
́
(2) For reviews see: (a) Guillarme, S.; Ple, K.; Banchet, A.; Liard, A.;
Haudrechy, A. Chem. Rev. 2006, 106, 2355−2403. (b) Mengel, A.;
Reiser, O. Chem. Rev. 1999, 99, 1191−1223. (c) Roiban, G.-D.; Ilie, A.;
Reetz, M. T. Chem. Lett. 2014, 43, 2−10.
(3) (a) Cher
́
est, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968,
, M.
9, 2199−2204. (b) Anh, N. T.; Eisenstein, O.; Lefour, J. M.; Dau
̂
E. J. Am. Chem. Soc. 1973, 95, 6146−6147. (c) Anh, N. T.; Eisenstein,
O. Tetrahedron Lett. 1976, 17, 155−158. (d) Anh, N. T.; Eisenstein, O.
Nouv. J. Chim. 1977, 1, 61−70. (e) Anh, N. T. Top. Curr. Chem. 1980,
88, 145−162.
( )-(3R,4S,E)-4-Methyl-3,6-diphenylhex-5-en-3-ol (2b). The gen-
eral procedure was applied to 1b (71 mg, 0.3 mmol) to give the title
1
compound 2b (8 mg, 30 μmol) as a colorless oil, in 10% yield. H
(4) (a) Cornforth, J. W.; Cornforth, R. H.; Mathew, K. K. J. Chem.
Soc. 1959, 112−127. (b) Evans, D. A.; Siska, S. J.; Cee, V. J. Angew.
Chem., Int. Ed. 2003, 42, 1761−1765. (c) Cee, V. J.; Cramer, C. J.;
Evans, D. A. J. Am. Chem. Soc. 2006, 128, 2920−2930.
NMR (CDCl3, 500 MHz): δ 0.69 (t, J = 7.4 Hz, 3H), 0.90 (d, J = 6.9
Hz, 3H), 1.83 (br s, 1H), 1.85−1.99 (m, 2H), 2.72 (dq, J = 8.9, 6.9 Hz,
1H), 6.24 (dd, J = 15.9, 8.9 Hz, 1H), 6.48 (d, J = 15.9 Hz, 1H), 7.19−
7.25 (m, 2H), 7.28−7.33 (m, 2H), 7.33−7.40 (m, 6H). 13C{1H} NMR
(CDCl3, 125 MHz): δ 7.9, 15.6, 33.7, 48.0, 79.1, 126.0, 126.3, 126.4,
127.3, 128.0, 128.7, 131.5, 132.0, 137.6, 144.7. IR (neat): 3582 (br),
3496 (br), 3082, 3059, 3026, 2969, 2931, 2876, 1599, 1494, 1447,
1371, 1262, 1161, 1073, 1030, 967, 909, 751, 701. HRMS (ESI): m/z
[C19H22O + Na]+ calcd 289.1568, found 289.1584. dr > 20:1
determined by 1H NMR analysis. Determination of the relative
stereochemistry was realized by performing an ozonolysis/NaBH4
reduction sequence and comparing with the data available for the
resulting diol in the literature.33
(5) (a) Cram, D. J.; Elhafez, F. A. A. J. Am. Chem. Soc. 1952, 74,
5828−5835. (b) Cram, D. J.; Kopecky, K. R. J. Am. Chem. Soc. 1959,
81, 2748−2755.
(6) For exceptions, see: (a) Reetz, M. T.; Hullmann, M. J. Chem. Soc.,
Chem. Commun. 1986, 1600−1602. (b) Frye, S. V.; Eliel, E. L.; Cloux,
R. J. Am. Chem. Soc. 1987, 109, 1862−1863. (c) Chen, X.; Hortelano,
E. R.; Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc. 1990, 112, 6130−6131.
(d) Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc.
1992, 114, 1778−1784. (e) Evans, D. A.; Allison, B. D.; Yang, M. G.
Tetrahedron Lett. 1999, 40, 4457−4460. (f) Evans, D. A.; Halstead, D.
P.; Allison, B. D. Tetrahedron Lett. 1999, 40, 4461−4462. (g) Evans, D.
A.; Allison, B. D.; Yang, M. G.; Masse, C. E. J. Am. Chem. Soc. 2001,
123, 10840−10852.
(7) (a) Stanton, G. R.; Johnson, C. N.; Walsh, P. J. J. Am. Chem. Soc.
2010, 132, 4399−4408. (b) Stanton, G. R.; Koz, G.; Walsh, P. J. J. Am.
Chem. Soc. 2011, 133, 7969−7976. (c) Stanton, G. R.; Kauffman, M.
C.; Walsh, P. J. Org. Lett. 2012, 14, 3368−3371. (d) Raffier, L.;
Stanton, G. R.; Walsh, P. J. Org. Lett. 2013, 15, 6174−6177.
(8) (a) Stanton, G. R.; Norrby, P.-O.; Carroll, P. J.; Walsh, P. J. J. Am.
1
4.6. General Procedure for the H NMR Study. In a glovebox,
the β,γ-unsaturated ketone (0.127 mmol) was taken up in dry CD2Cl2
(0.3 mL + 0.3 mL rinse) and transferred into a screw-cap NMR tube.
After sealing, the tube was taken out of the glovebox to record the
reference NMR spectra. The tube was then taken back into the
glovebox and EtZnCl (0.127 mmol, 16 mg) was added. The tube was
closed and taken out of the glovebox, and a second spectrum was
recorded (ketone + 1 equiv of EtZnCl). The NMR tube was
introduced one last time into the glovebox, where more EtZnCl (0.381
mmol, 49 mg) was added. The tube was closed and taken out of the
glovebox, and another NMR spectrum was recorded (ketone + 4 equiv
of EtZnCl). Comparison of the chemical shifts for these three cases
was systematically examined.
Chem. Soc. 2012, 134, 17599−17604. (b) Stanton, G. R.; Gollu, M.;
̈
̈
Platoff, R. M.; Rich, C. E.; Carroll, P. J.; Walsh, P. J. Adv. Synth. Catal.
2013, 355, 757−764.
(9) (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71−C79.
(b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939−2947.
(10) Hartwig, J. F. Organotransition Metal Chemistry: From Bonding to
Catalysis; University Science Books: Sausalito, CA, 2010.
ASSOCIATED CONTENT
■
S
* Supporting Information
A text file of all computed molecule Cartesian coordinates in a
(11) (a) Nyholm, R. S. Proc. Chem. Soc. 1961, 273−320.
(b) Elschenbroich, C.; Salzer, A. Organometallics: A Concise
Introduction, 2nd ed.; VCH Publishers Inc.: New York, 1992.
(12) (a) Canty, A. J.; Chaichit, N.; Gatehouse, B. M. Acta Crystallogr.,
Sect. B: Struct. Sci. 1980, 36, 786−789. (b) Lau, W.; Huffman, J. C.;
Kochi, J. K. J. Am. Chem. Soc. 1982, 104, 5515−5517. (c) Lau, W.;
Kochi, J. K. J. Org. Chem. 1986, 51, 1801−1811. (d) Corbeil, M.-C.;
Beauchamp, A. L. Can. J. Chem. 1988, 66, 2458−2464. (e) Avalos, M.;
format for convenient visualization. H and 13C{1H} NMR
1
spectra. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Authors
Notes
■
Babiano, R.; Cintas, P.; Duran
I.; Palacios, J. C. Tetrahedron 1997, 53, 14463−14480.
(13) Israeli, M.; Pettit, L. D. J. Chem. Soc., Dalton Trans. 1975, 414−
417.
́ ́ ́
, C. J.; Higes, F. J.; Jimenez, J. L.; Lopez,
The authors declare no competing financial interest.
(14) (a) Marek, I.; Beruben, D.; Normant, J.-F. Tetrahedron Lett.
1995, 36, 3695−3698. (b) Enders, M.; Ludwig, G.; Pritzkow, H. Eur. J.
Inorg. Chem. 2002, 539−542. (c) Wooten, A.; Carroll, P. J.; Maestri, A.
G.; Walsh, P. J. J. Am. Chem. Soc. 2006, 128, 4624−4631.
(d) Wehmschulte, R. J.; Wojtas, L. Inorg. Chem. 2011, 50, 11300−
ACKNOWLEDGMENTS
P.J.W. acknowledges the NSF (CHE-1152488). M.C.K.
acknowledges XSEDE TG-CHE120052 and the NIH
■
5376
dx.doi.org/10.1021/om5007006 | Organometallics 2014, 33, 5371−5377