370
M. Curini et al.
LETTER
(15) 13C NMR (50.1 MHz, CDCl3): d = 9.7, 14.0, 25.7, 41.1, 90.3,
173.8.
The formation of 2527 could be due to the tendency of
the hindered iodo derivative to give spontaneously in-
tramolecular nucleophilic substitution.
(16) 13C NMR (50.1 MHz, CDCl3): d = 29.3, 32.1, 34.6, 36.0,
36.1, 92.4, 175.9.
(17) Yellow oil. IR(neat): 1727 cm–1. 1H NMR (200 MHz,
CDCl3;): d = 2.50–1.80 (m, 1 H), 1.80–2.10 (m, 2 H), 2.20
(m, 1 H), 2.30–2.70 (m, 2 H), 3.29 (dd, 1 H, J = 4.5, 10 Hz),
3.42 (dd, 1 H, J = 4.8, 10 Hz), 4.20–4.30 (m, 1 H). 13C NMR
(50.1 MHz, CDCl3): d = 7.5, 18.2, 28.0, 29.2, 78.8, 170.0.
(18) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(19) Bartlett, P. A.; Myerson, J. J. Am. Chem. Soc. 1978, 100,
3951.
Even though we obtained compound 25 instead of 22, our
procedure represents a short formal synthesis of mintlac-
tone (20).
Acknowledgment
The authors thank Università degli Studi-Perugia for financial
support.
(20) Okimoto, Y.; Kikuchi, D.; Sagakuchi, S.; Ishii, Y.
Tetrahedron Lett. 2000, 10223.
(21) Oil. 1H NMR (200 MHz, CDCl3): d = 1.00–1.70 (m, 4 H),
1.70–2.10 (m, 2 H), 3.00–3.70 (m, 4 H), 4.00–4.10 (m, 1 H).
13C NMR (50.1 MHz, CDCl3): d = 10.1, 23.1, 25.6, 31.7,
68.8, 77.0.
References
(1) Harding, K. E.; Tiner, T. H. In Comprehensive Organic
Synthesis, Vol. 4; Trost, B. M.; Fleming, I., Eds.; Pergamon:
Oxford, 1991, 363.
(2) Bougault, M. J. Ann. Chim. Phys. 1908, 14, 145.
(3) Bedford, S. B.; Bell, K. E.; Bennet, F.; Hayes, C. J.; Knight,
D. W.; Shaw, D. E. J. Chem. Soc., Perkin Trans. 1 1999,
2143.
(4) Clark, J. H.; Ross, J. C.; Macquarrie, D. J.; Barlow, S. J.;
Bastock, T. W. J. Chem. Soc., Chem. Commun. 1997, 1203.
(5) Miller, J. A.; Nunn, M. Tetrahedron Lett. 1974, 2691.
(6) Srebnik, M.; Mechoulam, R. J. Chem. Soc., Chem. Commun.
1984, 1070.
(7) Chavan, S. P.; Sharma, A. Tetrahedron Lett. 2001, 4923.
(8) Jones, C. W. Application of Hydrogen Peroxide and
Derivatives, In RCS Clean Technology Monographs; Clark,
J. H., Ed.; The Royal Society of Chemistry: Cambridge UK,
1999.
(9) April, C. R.; Robert, C. M.; April, M. S. Synlett 1993, 899.
(10) Higgs, D. E.; Nelen, M. I.; Detty, M. R. Org. Lett. 2001, 3,
349.
(11) (a) Curini, M.; Epifano, F.; Marcotullio, M. C.; Rosati, O.
Tetrahedron Lett. 2002, 1201. (b) Curini, M.; Epifano, F.;
Marcotullio, M. C.; Rosati, O.; Rossi, M. Tetrahedron 1999,
55, 6211.
(12) General Procedure for the Iolactonization and the
Iodoetherification: To a stirred solution of 2 mmol of
Oxone® in 5 mL of a 4:1 H2O–CH3CN mixture, 4 mmol of
KI were added. After 10 min to the deep purple solution 1
mmol of the alkenoic acid (or the alkenol) in 2 mL of CH3CN
was added. The reaction was followed by TLC. After the
appropriate time (see Table 1 and Table 2) the reaction
mixture was diluted with H2O (10 mL), washed with a sat.
solution of Na2S2O3 and extracted with CH2Cl2 (3 × 10 mL).
The combined organic layers were dried and evaporated at
reduced pressure. All the products resulted pure by 1H and
13C NMR.
(22) To a stirred solution of 6-methyl-5-hepten-2-one (Aldrich)
(2 mmol) in 21 mL EtOH a solution of 40 mg (1 mmol) of
NaBH4 in 2 mL of H2O was added. The reaction was
monitored by TLC. At the end 10 mL of acetone were added
and the mixture was evaporated at reduced pressure. The
crude product was diluted with H2O (20 mL), acidified to pH
4 with a 4% solution of HCl and extracted with EtOAc
(3 × 10 mL). The combined organic layers were washed with
brine, dried and evaporated. The residue was purified by
column chromatography. Elution with CH2C12–MeOH 5%
gave 210 mg (93%) of alcohol 17. Oil. 1H NMR (200 MHz,
CDCl3): d = 1.23 (d, 3 H, J = 6 Hz), 1.40–1.60 (m, 2 H), 1.66
(s, 3 H), 1.73 (s, 3 H), 2.11 (m, 2 H), 3.84 (m, 1 H), 5.17 (m,
1 H). 13C NMR (50.1 MHz, CDCl3): d = 17.7, 23.4, 24.5,
25.7, 39.1, 67.9, 124.0, 132.4.
(23) Yellow oil. 1H NMR: d = 1.10 (d, 3 H, J = 6.0 Hz), 1.30–1.50
(m, 2 H), 1.41 (s, 3 H), 1.50 (s, 3 H), 2.31 (m, 2 H), 3.82 (m,
1 H), 4.12 (dd, 1 H, J = 5.0, 12.0 Hz). 13C NMR: d = 19.5,
22.2, 3 1.2, 34.5, 37.3, 38.5, 66.3.
(24) Takahashi, K.; Someya, T.; Muraki, S.; Yoshida, T. Agric.
Biol. Chem. 1980, 44, 1935.
(25) Ferraz, H. M. C.; Longo, L. S. Jr.; Grazini, M. V. Synthesis
2002, 2155.
(26) Compound 25 has been already reported as an intermediate
in a short synthesis of (–)-mintlactone by thallium(III)-
mediated cyclization of (–)-isopulegol: Ferraz, H. M. C.;
Grazini, M. V. A.; Ribeiro, C. M. R.; Brocksom, U.;
Brocksom, T. J. J. Org. Chem. 2000, 65, 2606.
(27) 3,6-Dimethyl-octahydro-1-benzofuran-3-ol(25). Oil. 1:1
Mixture of diastereoisomers. Yield 80%. 1H NMR: d = 0.90–
2.10 (m, 6 H), 0.97 (d, 3 H, J = 6.5 Hz), 1.25 (s, 3 H), 1.34
(s, 3 H), 3.20 (dd, 1 H, J = 4.0, 10.0 Hz), 3.26 (dd, 1 H,
J = 4.0, 10.0 Hz), 3.67 (d, 1 H, J = 9.0 Hz), 3.79 (d, 1 H,
J = 10.0 Hz), 3.86 (d, 1 H, J = 10.0 Hz), 3.87 (d, 1 H, J = 9.0
Hz). 13C NMR: d = 21.4, 22.0, 22.0, 22.7, 22.8, 24.0, 31.0,
31.0, 34.2, 34.3, 40.2, 40.3, 54.8, 56.4, 77.4, 77.8, 81.2, 81.2,
82.3, 82.3.
(13) Cambie, R. C.; Hayward, R. C.; Roberts, J. L.; Rutledge, P.
S. J. Chem. Soc., Perkin Trans. 1 1974, 1864.
(14) 13C NMR (50.1 MHz, CDCl3): d = 17.8, 41.0, 89.5, 126.0,
129.0, 129.4, 135.6, 173.7.
Synlett 2004, No. 2, 368–370 © Thieme Stuttgart · New York