Journal of the American Chemical Society
Page 4 of 5
D. H.; Kürti, L.; Falck, J. R. Science 2014, 343, 61–65. (c) Kornecki, K. P.;
In conclusion, we have described photogeneration of a
Rh2 nitrenoid intermediate in C–H amination. Based on
the observed photochemical C–H amination, the similar-
ity of the KIE for C–H amination to that of Rh2-catalyzed
amination reactions, the observation of m/z for a molec-
ular Rh2 nitrenoid, and TA spectroscopy correlated with
TD-DFT calculations, the developed photochemistry ena-
bles the first spectroscopic observation of critical Rh2
nitrenoid (i.e. 7) implicated in amination chemistry. We
anticipate that photochemical access to reactive metal
nitrenoids will facilitate direct characterization of these
critical amination intermediates, and thus contribute to
the rational development of C–H amination chemistry.
1
2
3
4
5
6
7
8
Berry, J. F. Chem. Commun. 2012, 48, 12097–12099. (d) Fiori, K. W.;
Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562–568. (e) Espino, C. G.;
Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378–
15379. (f) Espino, C. G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40,
598–600. (g) Müller, P.; Baud, C.; Jacquier, Y. Tetrahedron 1996, 52,
1543–1548. (h) Breslow, R. Gellman, S. H. J. Am. Chem. Soc. 1983, 105,
6728–6729.
(4) Perry, R. H.; Cahill, T. J., III; Roizen, J. L.; Du Bois, J.; Zare, R. N. Proc.
Nat. Acad. Sci. 2012, 109, 18295–18299.
(5) Varela-Álvarez, A.; Yang, T.; Jennings, H.; Kornecki, K. P.; Macmil-
lan, S. N.; Lancaster, K. M.; Mack, J. B. C.; Du Bois, J.; Berry, J. F.; Mu-
saev, D. G. J. Am. Chem. Soc. 2016, 138, 2327–2341.
(6) (a) Iovan, D. A.; Betley, T. A. J. Am. Chem. Soc. 2016, 138, 1983–
1993. (b) Kornecki, K. P.; Briones, J. F.; Boyarskikh, V.; Fullilove, F.;
Autschbach, J.; Schrote, K. E.; Lancaster, K. M.; Davies, H. M. L.; Berry,
J. F. Science 2013, 342, 351–354. (c) Rohde, J.-U.; In, J. H.; Lim, M. H.;
Brennessel, W. W.; Bukowski, M. R.; Stubna, A.; Munck, E.; Nam, W.
Que, L., Jr. Science 2003, 299, 1037–1039.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ASSOCIATED CONTENT
Supporting Information. Experimental procedures, spec-
troscopic data, optimized structure coordinates (PDF, cif).
Crystallographic data deposited in Cambridge Crystal Struc-
ture Database (1845233–1845238, 1855308). The Support-
ing Information is available free of charge on the ACS Publi-
cations website.
(7) Das, A.; Reibenspies, J. H.; Chen, Y.-S.; Powers, D. C. J. Am. Chem.
Soc. 2017, 139, 2912–2915.
(8) (a) Corcos, A. R.; Pap, J. S.; Yang, T.; Berry, J. F. J. Am. Chem. Soc.
2016, 138, 10032–10040. (b) Zhang, R.; Newcomb, M. Acc. Chem. Res.
2008, 41, 468–477. (c) Cheng, M.; Bakac, A. J. Am. Chem. Soc. 2008,
130, 5600. (d) Kunkely, H.; Vogler, A. J. Am. Chem. Soc. 1995, 117, 540–
541.
(9) (a) Smith, J. M. Prog. Inorg. Chem. 2014, 58, 417–470. (b) Berry, J.
F. Comm. Inorg. Chem. 2009, 30, 28–66.
AUTHOR INFORMATION
Corresponding Author
(10) Mixed-valent Rh2[II,III] complexes have also been observed in
amination reactions, although the role of Rh2[II,III]-derived nitrenoid
intermediates continues to be discussed. For discussion, see (a) ref. 5,
(b) Kornecki, K. P.; Berry, J. F. Chem. Eur. J. 2011, 17, 5827–5832. (c)
Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2009, 131, 7558–7559.
(11) (a) Stateman, L. M.; Nakafuku, K. M. Nagib, D. A. Synthesis 2018,
50, 1569–1586. (b) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603–1618.
(c) Neale, R. S. Synthesis 1971, 1–15. (d) Wolff, M. E. Chem. Rev. 1961,
63, 55–64.
(12) For discussion of the photochemical N–Cl homolysis in Chlora-
mine-T, see: Evans, J. C.; Jackson, S. K.; Rowlands, C. C.; Barratt, M. D.
Tetrahedron 1985, 41, 5191–5194.
(13) The only crystallographically characterized example of a metal
complex with an N-chlorosulfonamide ligand is a Sn complex reported
in: Shcherbakov, V. I.; Kuznetsova, V. P.; Chuprunov, E. V.; Ovsetsina,
T. I.; Stolyarova, N. E.; Zakharov, L. N.; Novgorod, N. Organomet.
Chem. (USSR) 1991, 4, 1350–1354.
(14) A number of isomers of Rh2[II,III] complex 3 are known. All exper-
iments reported here utilize the cis-(2,2) isomer in which each Rh cen-
ter features RhN2O2 ligation.
(15) (a) Lutterman, D. A.; Degtyareva, N. N.; Johnston, D. H.; Gal-
lucci, J. C.; Eglin, J. L.; Turro, C. Inorg. Chem. 2005, 44, 5388–5396.
(b) Kawamura, T.; Maeda, M.; Miyamoto, M.; Usami, H.; Imaeda, K.;
Ebihara, M. J. Am. Chem. Soc. 1998, 120, 8136–8142.
(16) The kh/kD = 2.9 was measured for the intramolecular amination of
3-phenylpropyl-3-d sulfamate (ref. 5). The KIE for Rh2-catalyzed ami-
nation of THF cannot be directly measured due to fast background re-
actions of PhINTs with THF to generate 6.
(17) For examples of kinetic isotope effects of HAA by aminyl radicals,
see: (a) Martínez, C.; Muñiz, K. Angew. Chem. Int. Ed. 2015, 54, 8287–
8291. (b) Corey, E. J.; Hertler, W. R. J. Am. Chem. Soc. 1960, 82, 1657–
1668.
*david.powers@chem.tamu.edu
ORCID
Anuvab Das: 0000-0002-9344-4414
Joshua Telser 0000-0003-3307-2556
David C. Powers: 0000-0003-3717-2001
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The authors thank Daniel G. Nocera for access to a nanosec-
ond laser apparatus, Ryan G. Hadt for helpful discussion,
and The Welch Foundation (A-1907) and Texas A&M Univer-
sity for funding. Crystal structures of 3 and 4 were deter-
mined at ChemMatCARS, which is housed at the APS, which
is principally supported by the NSF (NSF/CHE-1346572). Use
of the PILATUS3 X CdTe 1M detector is supported by the NSF
(NSF/DMR-1531283). Use of the APS was supported by the
U.S. DOE under Contract No. DE-AC02-06CH11357.
REFERENCES
(1) Kwart, H.; Khan, A. A. J. Am. Chem. Soc. 1967, 87, 1951–1953.
(2) (a) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247–9301.
(b) Brandenberg, O. F.; Fasan, R.; Arnold, F. H. Curr. Opin. Biotech.
2017, 47, 102–111. (c) Dequirez, G.; Pons, V.; Dauban, P. Angew.
Chem. Int. Ed. 2012, 51, 7384–7395. (d) Roizen, J. L.; Harvey, M. E.; Du
Bois, J. Acc. Chem. Res. 2012, 45, 911–922. (e) Du Bois, J. Org. Proc.
Res. Dev. 2011, 15, 758–762. (f) Zalatan, D. N.; Du Bois, J. Top. Curr.
Chem. 2010, 292, 347–378. (g) Davies, H. M. L.; Manning, J. R. Davies,
H. M. L.; Manning, J. R. Nature 2008, 451, 417–424. (h) Godula, K.;
Sames, D. Science 2006, 312, 67–72.
(18) Shainyan, B. A.; Kuzmin, A. V. J. Phys. Org. Chem. 2014, 27, 156–
162.
(19) Flash photolysis at these wavelengths afforded qualitatively iden-
tical spectra. Steady-state photolysis of 3 with a 325–385 nm bandpass
filter also afforded 5 and 6.
(3) (a) Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.;
Kürti, L.; Falck, J. R. Science 2016, 353, 1144–1147. (b) Jat, J. L.;
Paudyal, M. P.; Gao, H; Xu, Q.-L.; Yousufeddin, M.; Devarajan, D.; Ess,
ACS Paragon Plus Environment