2
Tetrahedron
As shown in Scheme 1, the synthesis commenced with the
preparation of known amide 5 from piperonylic acid 4 by
7
amidation. Aldehyde 6 was obtained in high yield via
Scheme 1. Synthetic procedure of parvinaphthol B
tetramethylethylenediamine (TMEDA)-promoted direct ortho-
lithiation of amide 5 using tert-BuLi, followed by reaction with
8
DMF. On the other hand, regioisomeric mixtures were obtained
In conclusion, a concise and efficient protocol (six linear steps
and 26.5% overall yield) has been developed toward the first
total synthesis of parvinaphthol
B
(1),
a
bioactive
when the bromination of 4 and 5 was performed to introduce the
ortho-formyl moiety via halogen-lithium exchange and reaction
with DMF. Cyano-isobenzofuranone 3 was readily prepared from
polyhydroxynaphthoate derived from the root of P. parvifolia.
The key feature of our synthesis involves a Hauser-Kraus
annulation, which afforded the polyhydroxynaphthoate skeleton.
Because of its efficiency, our synthetic route can potentially be
extended to structurally related naphthoates bearing phenolic
groups. Further synthesis of analogs and biological studies are
currently underway in our laboratory.
9
ortho-formyl benzamide 6 according to a literature procedure.
Hauser-Kraus annulation of isobenzofuranone 3 with methyl
acrylate using LHMDS afforded dihydroxynaphthoate 2 in
almost quantitative yield.
Generally, phenols in the ortho-position to carbonyl groups are
considered less reactive in O-alkylation reactions compared with
1
0
those in other positions. However, O-methylation of 1,4-
dihydroxynaphthoate 2 did not proceed selectively at the 4-
Acknowledgments
hydroxyl group and gave
a
mixture of 1,4-di-
This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future Planning
(2017R1C1B1001826).
methoxynaphthoates, although equimolar amounts of the methyl
electrophile and base were used. We supposed that the acidity of
the phenol at the 4-position may be reduced by intramolecular
hydrogen bonding with the oxygen at the 5-position, which
causes a loss of regioselectivity. For this reason, to introduce a
methyl moiety at the 4-hydroxyl group, we synthesized
References and notes
dimethoxynaphthoate 7 from 2 using excess CH
3
I and K
2
CO
Cl
3
.
1. (a) Wang, S.; Moustaid-Moussa, N.; Chen, L; Mo, H.; Shastri, A.;
Su, R.; Bapat, P.; Kwun, I.; Shen, C. L. J. Nutr. Biochem. 2014,
Addition of boron trichloride (BCl ) to a solution of 7 in CH
3
2
2
2
2
5, 1–18. (b) Xiao, J. B.; Hogger, P. Curr. Med. Chem. 2015, 22,
3–38. (c) Quiñones, M.; Miguel, M.; Aleixandre, A. Pharmacol.
at -78 °C afforded only 1-hydroxynaphthoate 8 even after stirring
for 24 h.
Res. 2013, 68, 125–131. (d) Barreto, G. E.; Guedes, R. C. Nutr
Neurosci, 2012, 15, 92–93. (e) Weng, C. J.; Yen, G. C. Cancer
Treat. Rev. 2012, 38, 76–87.
Next, we investigated the reaction temperature and time
required to simultaneously cleave the methylene acetal at the
2
3
.
.
(a) Biasutto, L.; Mattarei, A.; Sassi, N.; Azzolini, M.; Romio, M.;
Paradisi, C.; Zoratti, M. Anticancer agents Med. Chem. 2014, 14,
1332–1342. (b) Hamaguchi, T.; Ono, K.; Murase, A.; Yamada, M.
Am, J. Pathol. 2009, 175, 2557–2765. (c) Vuorela, P.; Leinonen,
M.; Saikku, P.; Tammela, P.; Rauha, J. P.; Wennberg, T.; Vuorela,
H. Curr. Med. Chem. 2004, 11, 1375–1389.
Abdissa, N.; Pan, F.; Gruhonjic, A.; Gräfenstein, J.; Fitzpatrick, P.
A.; Landberg, G.; Rissanen, K.; Yenesew, A.; Erdélyi, M. J. Nat.
Prod. 2016, 79, 2181–2187.
1
1
12
catechol group and the methyl ether at the 1-position of
dimethoxynaphthoate 7 without demethylation at the 4-position.
A mixture of parvinaphthol B (1) and dioxolane 8 was obtained
at temperatures higher than -40 °C. The optimal yield (71%) of
parvinaphthol B (1) was obtained when 7 was stirred at room
3
temperature for 30 min with 8 equivalents of BCl . The spectral
data for the synthesized parvinaphthol B (1) were identical to the
reported data. When the reaction time exceeded 1 h, the yield
was reduced due to complete demethylation. This undesired
demethylation of the 4-methoxy group could be due to possible
4. Sharma, P. Oncologist, 2016, 21, 1050–1062.
5
.
(a) Tandon, V. K.; Chhor, R. B.; Singh, R. V.; Rai, S.; Yadav, D.
B. Bioorg. Med. Chem. Lett. 2004, 14, 1079–1083. (b) Marastoni,
M.; Trapella, C.; Scotti, A.; Fantinati, A.; Ferretti, V.; Marzola, E.;
Eleonora, G.; Gavioli, R.; Preti, D. J. Enzyme Inhib. Med. Chem.
1
3
activation by the neighboring phenol at the 5-position of 1.
2
017, 32, 865–877. (c) Kumar, B. S.; Ravi, K.; Verma, A. K.;
O
O
oxalyl chloride, DMF
CH2Cl2, rt
t-BuLi, TMEDA
°
THF, -78 C
Fatima, K.; Hasanain, M.; Singh, A.; Sarkar, J.; Luqman, S.;
Chanda, D.; Negi, A. S. Bioorg. Med. Chem. 2017, 25, 1364–1373.
(a) Kraus, G. A.; Sugimoto, H. Tetrahedron Lett. 1978, 20, 2263-
OH
NEt2
6
.
then, HNEt2, CH2Cl2, rt
81%
then, DMF, -78 °C
O
O
2
1
266. (b) Hauser, F. M.; Rhee, R. P. J. Org. Chem. 1978, 43, 178-
80. (c) Rathwell, K.; Brimble, M. A. Synthesis 2007, 643-662.
O
O
84%
4
5
(
d) Michell, A. S.; Russell, R. A. Tetrahedron 1995, 51, 5207-
236. (e) Mal, D.; Pahari, P. Chem. Review. 2007, 107, 1892-1981.
7. Dam, J. H.; Madsen, R. Eur. J. Org. Chem. 2009, 27, 4666–4673.
5
TMSCN, KCN,
18-crown-6
O
O
LHMDS
methyl acrylate
8
.
(a) Slocum, D. W.; Reinscheld, T. K.; White, C. B.; Timmons, M.
D.; Shelton, P. A.; Slocum, M. G.; Sandlin, R. D.; Holland, E. G.;
Kusmic, D.; Jennings, J. A.; Tekin, K. C.; Nguyen, Q.; Bush, S. J.;
Keller, J. M.; Whitley, P. E. Organometallics, 2013, 32, 1674–
1686. (b) Ueberschaar, N.; Dahse, H. M.; Bretschneider, T.;
Hertweck, C. Angew, Chem., Int. Ed. 2013, 52, 6185–6189.
Okazaki, K.; Nomura, K.; Yoshii, E. Synth. Commnun. 1987, 17,
1021–1027.
CH2Cl2, rt
NEt2
O
H
°
THF, -78 C
then, AcOH, rt
94%
O
O
CN
O
O
O
99%
6
3
OH
O
OMe O
OMe
9
1
.
BCl3
OMe
MeI, K2CO3
OMe
0. (a) Fu, H.; Chang, H.; Shen, J.; Yu, L.; Qin, B.; Zhang, K.; Zeng,
H. Chem. Commun. 2014, 50, 3582–3584. (b) Maiti, A.; Cuendet,
M.; Kondratyuk, T.; Croy, V. L.; Pezzuto, J. M.; Cushman, M. J.
Med. Chem. 2007, 50, 350–355.
°
DMF, 80 C
CH Cl , rt
2
2
O
O
O
OH
59%
O
1: 71%
: 8%
8
2
7
1
1
1. Mure, M.; Wang, S. X.; Klinman, J. P. J. Am. Chem. Soc. 2003,
125, 6113–6125.
OH
O
OH O
2. Jang, H. Y.; Park, H. J.; Damodar, K.; Kim, J. K.; Jun, J. G.
Bioorg. Med. Chem. Lett. 2016, 26, 5438–5443.
OMe
OMe
+
HO
13. (a) Nishimura, T.; Iwata, T.; Maegawa, H.; Nishii, T.;
Matsugasako, M.; Kaku, H.; Horikawa, M.; Inai, M.; Tsunoda, T.
Synlett 2012, 23, 1789–1792 (b) Yanagisawa, A.; Taga, M.;
O
OH OMe
Parvinaphthol B (1)
O
OMe
8