SYNTHESIS, CHARACTERIZATION, AND APPLICATION
433
5. Khodaei, M.M., Salehi, P., Zolfigol, M.A., and Sirꢀ
ouszadeh, S., Pol. J. Chem., 2004, vol. 78, p. 385.
6. Hideo, T., Japanese Patent 56005480, Chem. Abstr.
1981, vol. 95, 80922b.
7. Lambert, R.W., Martin, J.A.J., Merrett, H.,
Parkes, K.E.B., and Thomas, G.J., PCT. Int. Appl.
WO 9706178, Chem. Abstr., 1978, vol. 126, 212377y.
8. Ion, R.M., Prog. Catal., 1997, vol. 2, p. 55.
0.30
0.25
0.20
0.15
0.10
0.05
0
,
1
2
9. Banerjee, A. and Mukherjee, A.K., Stain Technol.
,
1981, vol. 56, p. 83.
400 420 440 460 480 500 520 540 560
Wavelength, nm
10. Ahmad, M., King, T.A., Ko, K.D., Cha, B.H., and
Lee, J., J. Phys. D: Appl. Phys., 2002, vol. 35, p. 1473.
11. Sirkeeioglu, O., Talinli, N., and Akar, A., J. Chem. Res.,
Synop., 1995, p. 502.
Fig. 4. UVꢀVis absorbance of Co(HSO )
Co(NO ) (2).
3 2
(1) and
4 2
12. Knight, D.W. and Little, P.B., Synlett, 1998. p. 1141;
Knight, D.W. and Little, P.B., J. Chem. Soc., Perkin
Trans. 1, 2001, p. 1771.
that aryl aldehydes, both possessing electronꢀwithꢀ
drawing and electronꢀdonating groups, afforded the
corresponding products in good yields. In particular,
13. Jha, A. and Beal, J., Tetrahedron Lett., 2004, vol. 45,
p. 8999.
14. Kuo, C.W. and Fang, J.M., Synth. Commun., 2001,
vol. 31, p. 877.
aryl aldehydes with substrates at the paraꢀ and metaꢀ
positions of the benzene ring gave products in high
yield, whereas those with substrates at the orthoꢀposiꢀ
tion gave products in somewhat lower yields, probably
due to steric hindrance. Work up procedures is very
simple and include filtration of reaction mixture to
separate the heterogeneous catalyst. The filtrate was
concentrated to give a crude product which was then
recrystallized from ethanol to give pure 14ꢀarylꢀ14Hꢀ
dibenzoxanthene (3a–l) and 9ꢀarylꢀ1,8ꢀdioxooctahyꢀ
droxanthene (5a–l) in excellent yields. Absence of OH
15. Sarma, R.J. and Baruah, J.B., Dyes Pigm., 2005,
vol. 64, p. 91.
16. Shaterian, H.R., Ghashang, M., and Hassankhani, A.,
Dyes Pigm., 2008, vol. 76, p. 564.
17. Khosropour, A.R., Khodaei, M.M., and Moghannian, H.,
Synlett, 2005, p. 955.
18. Ko, S. and Yao, C.F., Tetrahedron Lett., 2006, vol. 47,
p. 8827.
19. Eshghi, H., Bakavoli, M., and Moradi, H., Chin. Chem.
Lett., 2008, vol. 19, p. 1423.
20. Nagarapu, L., Kantevari, S., Mahankhali, V.C., and
Apuri, S., Catal. Commun., 2007, vol. 8, p. 1173.
21. Seyyedhamzeh, M., Mirzaei, P., and Bazgir, A., Dyes
Pigm., 2008, vol. 76, p. 836.
1
absorptions in the H NMR and IR spectra confirms
the structure of 14ꢀarylꢀ14Hꢀdibenzoxanthene. In all
1
the H NMR spectra (CDCl3), the characteristic peak
of 14ꢀHꢀdibenzoxanthene appeared as a singlet in the
range 5.5–7.0 ppm. On the other hand, in all the
1H NMR spectra of 9ꢀarylꢀ1,8ꢀdioxooctahydroxanꢀ
22. Shakibaei, I., Mirzaei, G., and Bazgir, P.A., Appl.
Catal., A, 2007, vol. 325, p. 188.
23. Kantevari, R., Bantu, R., and Nagarapu, L., J. Mol.
Catal. A: Chem., 2007, vol. 269, p. 53.
24. Das, B., Thirupathi, P., Reddy, K., Ravikanth, B., and
Nagarapu, L., Catal. Commun., 2007, vol. 8, p. 535.
25. Jin, T.S., Zhang, J.S., Wang, A.Q., and Li, T.S., Ultraꢀ
son. Sonochem., 2006, vol. 13, p. 220.
thene
(CDCl3), the characteristic peak of
9Hꢀdioxooctahydroxanthene appeared as a singlet in
the 4.6–5.5 ppm region.
In conclusion, cobalt hydrogen sulfate is prepared
for the first time by treatment of cobalt chloride with
concentrated sulfuric acid. This catalyst was characꢀ
terized by FTꢀIR, TEM and XRD. The efficiently of
this new catalyst was demonstrated in the synthesis of
14ꢀarylꢀ14Hꢀdibenzoxanthenes and synthesis of 1,8ꢀ
dioxooctahydroxanthenes by using Co(HSO4)2 as a
heterogeneous acid catalyst. The simplicity, together
with the use of inexpensive, nonꢀtoxic, recyclable and
environmentally friendly catalyst belongs to other
remarkable features of the procedure.
26. Song, G., Wang, B., Luo, H., and Yang, L., Catal. Comꢀ
mun., 2007, vol. 8, p. 673.
27. Das, B., Thirupathi, P., Mahender, I., Reddy, V.S., and
Rao, Y.K., J. Mol. Catal. A: Chem., 2006, vol. 247,
p. 233.
28. Darviche, F., Balalaie, S., Chadegani, F., and Salehi, P.,
Synth. Commun., 2007, vol. 37, p. 1059.
29. Kantevari, S., Bantu, R., and Nagarapu, L., Arkivoc
2006, vol. 16, p. 136.
,
,
30. Karade, H.N., Sathe, M., and Kaushik, M.P., Arkivoc
2007, vol. 13, p. 252.
31. Cremlyn, R.J. and Saunders, D., Phosphorus, Sulfur
Silicon Relat. Elem., 1993, vol. 81, p. 73.
32. Eshghi, H., J. Chin. Chem. Soc., 2006, vol. 53, p. 987.
33. Eshghi, H., Rahimizadeh, M., Attaran, N., and
Bakavoli, M., J. Iran. Chem. Soc., 2013, vol. 10,
p. 1151.
34. Eshghi, H., Rahimizadeh, M., Hosseini, M., and Javaꢀ
dian Saraf, A., Monatsh. Chem., 2013, vol. 144, p. 197.
35. Eshghi, H., Seyedi, S.M., Safaei, E., Vakili, M., and
Farhadipour, A., Bayat mokhtary m, J. Mol. Catal. A:
Chem., 2012, vol. 363, p. 430.
REFERENCES
1. Das, B. and Venkataiah, B., Synthesis, 2000, vol. 12,
p. 1671.
2. Ramesh, C., Ravindranath, N., and Das, B., J. Org.
Chem., 2003, vol. 68, p. 7101.
3. Das, B., Ravindranath, N., Venkataiah, B., and
Madhusudhan, P., J. Chem. Res., Synop., 2000, p. 482.
4. Shirini, F., Zolfigol, M.A., and Safari, A., Indian J.
Chem., 2005, vol. 44B, p. 201.
KINETICS AND CATALYSIS Vol. 55
No. 4 2014