D. Dewangan, K. Nakhate, A. Mishra, A. S. Thakur, H. Rajak, J. Dwivedi, S. Sharma, and S. Paliwal Vol 000
with ciprofloxacin, 15 were found to be similar in
compounds like 4c [viz. 7ALA(beta strand), 18ASN(coil),
15GLY(coil), 93GLY(coil), 14ILE(coil), 50ILE(coil),
5LEU(beta strand), 20LEU(coil), 54LEU(beta strand),
considered that compounds 4c, 4d, and 4i exhibited
optimistic antimicrobial activity; furthermore, docking
studies suggested that compounds 4c and 4d were
interacted with protein more efficiently, and hence, these
derivatives could be further studied for their mechanisms
of action in depth and could be developed as effective
antimicrobial agents.
92PHE(coil),
121THR(beta
98PHE(alpha
strand), 6VAL(beta
helix),
49SER(coil),
strand), and
31VAL(alpha helix)] and 6 were found to be similar in
compounds like 4d [viz. 50ILE(coil), 20LEU(coil),
54LEU(beta strand45LYS(alpha helix), 92PHE(coil),
46THR(alpha helix), and 31VAL(alpha helix)]. The
compound 4c showed binding site alignment pattern
resemblance to that of ciprofloxacin with amino acid chain
of DHFR (4XE6) as shown in Figure 3.
Acknowledgments. The authors thank to the Management of
Shri Shankaracharya Institute of Pharmaceutical Science, Bhilai,
and Management of Rungta College of Pharmaceutical Sciences
and Research, Bhilai, for providing necessary infrastructural
facilities and IISER, Bhopal, for providing immense help in the
spectral analysis.
STRUCTURE ACTIVITY RELATIONSHIP
REFERENCES AND NOTES
From the results of in vivo antimicrobial activity of
newly prepared quinoxaline derivatives, the following
structural activity relationship was derived. The tested
derivatives 4c, 4d, and 4i were found to be promising
active against the tested strain of microbes. Almost all the
analogs showed good activity against all strains of bacteria
(Table 4 and 5). The antimicrobial activity of synthesized
compounds was compared to ciprofloxacin. The
structure–activity relationship study recommended that
electron withdrawing group substitutes were exhibiting
better activity against almost all the bacteria. Compounds
4c, 4d, and 4i were constituted with electron withdrawing
substituents at the meta and para position of phenyl ring
and had contemplated as lead compounds and exhibited
significant activity. Whereas the compound substituted
with an electron donating group or unsubstituted the
phenyl ring offered a low to moderate activity against
selected strains. Derivatives having an attachment of
OCH3 groups as a substituent on phenyl ring undergo the
least effect on selected bacterial strains. Derivatives with
unsubstituted phenyl ring have a moderate response on
used strains as compared to standard.
[1] Kumar, S. G.; Adithan, C.; Harish, B. N.; Sujatha, S.; Roy, G.;
Malini, A. J Nat Sci Biol Med 2013, 4, 279.
[2] Maltezou, H. C.; Theodoridou, M.; Daikos, G. L. J Glob
Antimicrob Resist 2017, 10, 75.
[3] Santos, S. M.; Henriques, M.; Duarte, A. C.; Esteves, V.
Talanta 2007, 71, 731.
[4] Muhammad, B.; Tahir, R.; Hafiz, M. N. I.; Hongbo, H.; Wei,
W.; Xuehong, Z. Int J Biol Macromol 2017, 103, 554.
[5] Sundera, R. E. P.; Chidamabram, R.; Balasubramanian, R.
Saudi J Bio Sci 2017, 24, 1679.
[6] Wakelin, S. P.; Waring, M. J. Biochem J 1976, 157, 721.
[7] Vollaard, E. J.; Clasener, H. A. Antimicrob Agents Chemother
1994, 38, 409.
[8] Nguyen, S. T.; Williams, J. D.; Butler, M. M.; Ding, X.; Mills,
D. M.; Tashjian, T. F.; Panchal, R. G.; Weir, S. K.; Moon, C.; Kim, H. O.;
Marsden, J. A. Bioorg Med Chem Lett 2014, 24, 3366.
[9] Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. J Curr
Med Chem 2010, 17, 1960.
[10] Suresh, M.; Lavanya, P.; Sudhakar, D.; Vasu, K.; Rao, C. V. J
Chem Pharm Res 2010, 2, 497.
[11] Tandon, V. K.; Yadav, D. B.; Maurya, H. K.; Chaturvedi, A.
K.; Shukla, P. K. Bioorg Med Chem 2006, 14, 6120.
[12] Hajri, M.; Esteve, M. A.; Khoumeri, O.; Abderrahim, R.;
Terme, T.; Montana, M.; Vanelle, P. Eur J Med Chem 2016, 29, 959.
[13] Parhi, A. K.; Yong, Z. Z.; Saionz, K. W.; Pradhan, P.; Kaul,
M.; Trivedi, K.; Pilch, D. L.; LaVoie, E. J. Bioorg Med Chem Lett
2013, 23, 4968.
[14] Badran, M. M.; Abouzid, K. A. M.; Hussein, M. H. M. Arch
Pharm Res 2003, 26, 107.
[15] Ramalingam, P.; Ganapaty, S.; Rao, C. B. Bioorg Med Chem
Lett 2010, 20, 406.
CONCLUSION
[16] Veliz, M. S.; Pérez-Silanes, S.; Torres, E.; Moreno-Viguri, E.
Bioorg Med Chem Lett 2016, 26, 2188.
[17] Shibinskaya, M. O.; Lyakhov, S. A.; Mazepa, A. V.;
Andronati, S. A.; Turov, A. V.; Zholobak, N. M.; Spivak, N. Y. A. Eur
J Med Chem 2010, 45, 1237.
[18] Xu, H.; Fan, L. L. Eur J Med Chem 2011, 46, 1919.
[19] Javidi, J.; Esmaeilpour, M. Mater Res Bull 2016, 73, 409.
[20] Ingle, R.; Marathe, R.; Magar, D.; Patel, H. R.; Surana, S. J.
Eur J Med Chem 2013, 65, 168.
[21] Tseng, C. H.; Chen, Y. R.; Tzeng, C. C.; Liu, W.; Chou, C. K.;
Chiu, C. C.; Chen, Y. L. Eur J Med Chem 2016, 108, 258.
[22] Chandra Shekhar, A.; Rao, P. S.; Narsaiah, B.; Allanki, A. D.;
Sijwali, P. S. Eur J Med Chem 2014, 77, 280.
A
new series of different 2,3-bis(2-(sustituted
benzylidine) hydrazinyl) quinoxalines derivatives were
prepared by treating 2, 3-dihydrazinyl quinoxaline with
different aromatic aldehydes, by a simple, suitable, and
well-organized synthetic route. Physical and analytical
parameters of the newly synthesized quinoxaline
1
derivatives were confirmed by TLC, IR, H-NMR, and
MS. Subsequently, in biological screening, the
compounds were considered as promising lead
compounds for the further development of a new
antimicrobial drug. From the in vitro studies, it is
[23] Guillon, J.; Mouray, E.; Moreau, E.; Mullié, C.; Forfar, I.;
Desplat, V.; Belisle-Fabre, S.; Pinaud, N.; Ravanello, F.; Le-Naour, A.;
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet