Page 5 of 6
Journal of the American Chemical Society
Catalyzed Silylation via C−OMe Cleavage. J. Am. Chem.
2013, p 373. (c) Franz, A. K.; Wilson,ꢀS. O. Organosilicon
Molecules with Medicinal Applications. J. Med. Chem.
2013, 56, 388. (d) Liu, X. –M.; He, C.; Haung, J.; Xu, J.
Highly Efficient Blue-Light-Emitting Glass-Forming
Molecules Based on Tetraarylmethane/Silane and Fluorene:
Synthesis and Thermal, Optical, and Electrochemical
Properties. Chem. Mater. 2005, 17, 434. (e) Bains, W.;
Tacke, R. Silicon Chemistry as a Novel Source of Chemical
Diversity in Drug Design. Curr. Opin. Drug Discovery Dev.
2003, 6, 526. (f) Showwell, G. A.; Mills, J. S. Chemistry
Challenges in Lead Optimization: Silicon Isosteres in Drug
Discovery. Drug Discovery Today 2003, 8, 551.
1
2
3
4
5
6
7
8
Soc. 2017, 139, 1191. (c) Zarate, C.; Martin, R. A Mild
Ni/Cu-Catalyzed Silylation via C−O Cleavage. J. Am. Chem.
Soc. 2014, 136, 2236.
(13) See Supporting information for details
(14) For selected examples in which the escorting counterion
plays a non-negligible role on reactivity: (a) Tobisu, M.;
Takahira, T.; Morioka, T.; Chatani, N. Nickel-Catalyzed
Alkylative Cross-Coupling of Anisoles with Grignard
Reagents via C–O Bond Activation. J. Am. Chem. Soc. 2016,
138, 6711. (b) Cornella, J.; Martin, R. Ni-Catalyzed
Stereoselective Arylation of Inert C-O bonds at Low
Temperatures. Org. Lett. 2013, 15, 6298. (c) see ref. 12b. (d)
Casado, F.; Pisano, L.; Farriol, M.; Gallardo, I.; Marquet, J.;
Melloni, G. J. Org. Chem. 2000, 65, 322, and citations
therein.
(15) The combination of Et3SiH/KOtBu has shown to promote the
silylation of electron-rich heteroarenes via radical chain or
pentacoordinated species: (a) Toutov, A. A.; Liu, W.-B.;
Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H.
Silylation of C–H bonds in aromatic heterocycles by an
Earth-abundant metal catalyst. Nature 2015, 518, 80.; (b)
Liu, W.-B.; Schuman, D. P.; Yang, Y.-F.; Toutov, A. A.;
Liang, Y.; Klare, H. F. T.; Nesnas, N.; Oestreich, M.;
Blackmond, D. G.; Virgil, S. C.; Banerjee, S.; Zare, R. N.;
Grubbs, R. H.; Houk K. N.; Stoltz, B. M. Potassium tert-
Butoxide-Catalyzed Dehydrogenative C−H Silylation of
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) For recent reviews: (a) Cheng, C.; Hartwig, J. F. Catalytic
Silylation of Unactivated C-H Bonds. Chem. Rev. 2015, 115,
8946. (b) Zheng X.; Huang, W.-S.; Zhang, J.; Xu, L.-W.
Recent Advances in Transition-Metal-Catalyzed Silylations
of Arenes with Hydrosilanes: C–X Bond Cleavage or C–H
Bond Activation Synchronized with Si–H Bond Activation.
Synthesis 2015, 47, 3645.
(9) For selected references: (a) Maji, A.; Guin, S.; Feng, S.;
Dahija, A.; Singh, V. K.; Liu, P.; Maiti, D. Experimental and
Computational Exploration of para-Selective Silylation with
a hydrogen template. Angew. Chem. Int. Ed. 2017, 56, 14903.
(b) Modak, A.; Patra, T.; Chowdhury, R.; Raul, S.; Maiti, D.
Organometallics 2017, 36, 2418. (c) Elsby, M. R.; Johnson,
S. A. Nickel-Catalyzed C-H silylation of Arenes with
Vinylsilanes: Rapid and Reversible -Si Elimination. J. Am.
Chem. Soc. 2017, 139, 9401. (d) Kitano, T.; Komuro, T.;
Ono, R.; Tobita, H. Organometallics 2017, 36, 2710. (e)
Omann, L.; Oestreich, M. Catalytic Access to Infole-Fused
Benzosiloles by 2-Fold Electrophilic C-H Silylation with
Dihydrosilanes. Organometallics 2017, 36, 767. (f) Cheng,
C.; Hartwig, J. F. Rhodium-Catalyzed Intermolecular C–H
Silylation of Arenes with High Steric Regiocontrol. Science
2014, 343, 853, and citations therein. (g) Shippey, M. A.;
Dervan, P. B. Trimethylsilyl Anions. Direct Synthesis of
Trimethylsilylbenzenes. J. Org. Chem. 1977, 42, 2654. (h)
Barry, A. J.; Gilkey, J. W.; Hook, D. E. In Metal-Organic
Compounds; Advances in Chemistry; American Chemical
Society 1959, 23, 246-264.
Heteroaromatics:
A
Combined Experimental and
Computational Mechanistic Study. J. Am. Chem. Soc. 2017,
139, 6867. (c) Banerjee, S.; Yang, Y.-F.; Jenkins, I. D.;
Liang, Y.; Toutov, A. A.; Liu, W.-B.; Schuman, D. P.;
Grubbs, R. H.; Stoltz, B. M.; Krenske, E. H.; Houk K. N.;
Zare, R. N. Ionic and Neutral Mechanisms for C−H Bond
Silylation of Aromatic Heterocycles Catalyzed by Potassium
tert-Butoxide. J. Am. Chem. Soc. 2017, 139, 6880.
(16) It is worth noting that not even traces of 2a/3a were observed
by exposing electron-poor azines to either KOtBu /Et3SiH
(see ref. 15) or KHMDS/Et3SiH, indicating that our silylation
follows a different mechanistic rationale.
(17) The addition of extra KHMDS/Et3SiBPin does not improve
yields. The mass balance accounts for unreacted azine
(18) For a mechanistic rationale, see ref. 13.
(10) (a) Rubio-Pérez, L.; Iglesias, M.; Munárriz, J.; Polo, V.;
Passarelli, V.; Pérez-Torrente, J. J.; Oro, L. A. Chem. Sci.
2017, 8, 4811. (b) Cheng, C.; Hartwig, J. F. Iridium-
Catalyzed Silylation of Aryl C−H Bonds. J. Am. Chem. Soc.
2015, 137, 592. (c) Wübbolt, S.; Oestreich, M. Catalytic
Electrophilic C-H Silylation of Pyridines Enabled by
Temporary Dearomatization. Angew. Chem. Int. Ed. 2015,
54, 15876.
(19) Albini, A.; Pietra, S. Heterocyclic N–Oxides; CRC Press:
Boca Raton, FL, 1991.
(20) Diederich, F.; de Meijere, A., Eds. Metal-Catalyzed Cross-
Coupling Reactions; Wiley-VCH: Weinheim, 2004.
(21) At present, we do not have a rationale behind the role exerted
by the ketone backbone on site-selectivity en route to 7 and
10.
(11) For an elegant Pd-catalyzed silylation event: (a) Oshima, K.;
(22) For the importance of coordination on the functionalization
of azines: (a) Nagase, M.; Kuninobu, Y.; Kanai M.
Ohmura,
T.;
Suginome
M.
Palladium-Catalyzed
Regioselective Silaboration of Pyridines Leading to the
Synthesis of Silylated Dihydropyridines. J. Am. Chem. Soc.
2011, 133, 7324. For a two-step strategy via phosphonium
salts: (b) Dolewski, R. D.; Fricke, P. J.; McNally, A. Site-
Selective Switching Strategies to Functionalize Polyazines.
J. Am. Chem. Soc. 2018, 140, 8020. For radical silylation of
a specific substrate: (c) Du, W.; Kaskar, B.; Blumbergs, P.;
Subramanian, P.-K.; Curran, D. P. Semisynthesis of DB-67
and other Silatecans from Camptothecin by Thiol-Promoted
Addition of Silyl Radicals. Bioorg. Med. Chem. 2003, 11,
451.
4‐Position-Selective
C−H
Perfluoroalkylation
and
Perfluoroarylation of Six-Membered Heteroaromatic
Compounds. J. Am. Chem. Soc. 2016, 138, 6103. (b) Andou,
T.; Saga, Y.; Komai, H.; Matsunaga, S.; Kanai, M. Cobalt-
Catalyzed C4-Selective Direct Alylation of Pyridines.
Angew. Chem. Int. Ed. 2013, 52, 3213. (c) Bull, J. A.;
Mosseau, J. J.; Pelletier, G.; Charette, A. B. Synthesis of
Pyridine and Dihydropyridine Derivatives by Regio- and
Stereoselective Addition of N-Activated Pyridines. Chem.
Rev. 2012, 112, 2642. (d) Tsai, C. –C.; Shih, W. –C.; Fang,
C. –H.; Li, C. –Y.; Ong, T. –G.; Yap, G. P. A. Bimetallic
Nickel Aluminum Mediated Para-Selective Alkenylation of
Pyridine: Direct Observation of 2,1-Pyridine Ni(0)–Al(III)
Intermediates Prior to C–H Bond Activation. J. Am. Chem.
Soc. 2010, 132, 11887. (e) Nakao, Y.; Yamada, Y.;
(12) (a) Somerville, R.; Hale, L.; Gomez-Bengoa, E.; Burés, J.;
Martin, R. Intermediacy of Ni-Ni Species in sp2 C−O Bond
Cleavage of Aryl Esters: Relevance in Catalytic C−Si Bond
Formation J. Am. Chem. Soc. 2018, 140, 8771. (b) Zarate,
C.; Nakajima, M.; Martin, R. A Mild and Ligand-Free Ni-
ACS Paragon Plus Environment