Organometallics
Communication
chemistry. Chem. Soc. Rev. 2008, 37, 320−330. (c) Hagmann, W. K.
The many roles for fluorine in medicinal chemistry. J. Med. Chem.
2008, 51, 4359−4369. (d) Wang, J.; Sanchez-Rosello, M.; Acena, J.
L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.;
Liu, H. Fluorine in pharmaceutical industry: fluorine-containing drugs
introduced to the market in the last decade (2001−2011). Chem. Rev.
2014, 114, 2432−2506.
from isolated nickel(III) complexes. J. Am. Chem. Soc. 2016, 138,
16105−16111.
(8) Jongbloed, L. S.; Vogt, N.; Sandleben, A.; de Bruin, B.; Klein, A.;
van der Vlugt, J. I. Nickel-alkyl complexes with a reactive PNC-pincer
ligand. Eur. J. Inorg. Chem. 2018, 2018, 2408−2418.
(9) (a) Chen, T.-A.; Wu, X.; Rieke, R. D. Regiocontrolled synthesis
of poly(3-alkylthiophenes) mediated by Rieke zinc: Their character-
ization and solid-state properties. J. Am. Chem. Soc. 1995, 117, 233−
244. (b) Kumada, M. Nickel and palladium complex catalyzed cross-
coupling reactions of organometallic reagents with organic halides.
Pure Appl. Chem. 1980, 52, 669−679. (c) Lanni, E. L.; McNeil, A. J.
Mechanistic studies on Ni(dppe)Cl2-catalyzed chain-growth polymer-
izations: Evidence for rate-determining reductive elimination. J. Am.
Chem. Soc. 2009, 131, 16573−16579.
(2) (a) Ritter, T. Catalysis: fluorination made easier. Nature 2010,
466, 447−448. (b) Lundgren, R. J.; Stradiotto, M. Transition-metal-
catalyzed trifluoromethylation of aryl halides. Angew. Chem., Int. Ed.
2010, 49, 9322−9324. (c) Furuya, T.; Kamlet, A. S.; Ritter, T.
Catalysis for fluorination and trifluoromethylation. Nature 2011, 473,
470−477. (d) Tomashenko, O. A.; Grushin, V. V. Aromatic
trifluoromethylation with metal complexes. Chem. Rev. 2011, 111,
4475−4521. (e) Chen, P.; Liu, G. Recent advances in transition-
metal-catalyzed trifluoromethylation and related transformations.
Synthesis 2013, 45, 2919−2939. (f) Landelle, G.; Panossian, A.;
Pazenok, S.; Vors, J.-P.; Leroux, F. R. Recent advances in transition
metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation
and trifluoromethylthiolation. Beilstein J. Org. Chem. 2013, 9, 2476−
(10) Maleckis, A.; Sanford, M. S. Synthesis of fluoroalkyl palladium
and nickel complexes via decarbonylation of acylmetal species.
Organometallics 2014, 33, 3831−3839.
(11) An analogous procedure has been used to access (PtBu3)
Pd(Aryl)(CF3) complexes. See ref 3d.
(12) Dubinina, G. G.; Brennessel, W. W.; Miller, J. L.; Vicic, D. A.
Exploring trifluoromethylation reactions at nickel: A structural and
reactivity study. Organometallics 2008, 27, 3933−3938.
2536. (g) Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Acena, J. L.; Izawa, K.;
̃
Liu, H.; Soloshonok, V. A. Recent advances in the trifluoromethy-
lation methodology and new CF3-containing drugs. J. Fluorine Chem.
2014, 167, 37−54. (h) Alonso, C.; Martínez de Marigorta, E.;
Rubiales, G.; Palacios, F. Carbon trifluoromethylation reactions of
hydrocarbon derivatives and heteroarenes. Chem. Rev. 2015, 115,
1847−1935.
(13) Jover, J.; Miloserdov, F. M.; Benet-Buchholz, J.; Grushin, V. V.;
Maseras, F. On the feasibility of nickel-catalyzed trifluoromethylation
of aryl halides. Organometallics 2014, 33, 6531−6543.
(14) Complex 1a is otherwise stable under these conditions in the
absence of oxidant.
(15) Grushin, V. V.; Marshall, W. J. Unexpected H2O-induced Ar-X
activation with trifluoromethylpalladium(II) aryls. J. Am. Chem. Soc.
2006, 128, 4632−4641.
(3) (a) Grushin, V. V.; Marshall, W. J. Facile Ar-CF3 bond formation
at Pd. Strikingly different outcomes of reductive elimination from
[(Ph3P)2Pd(CF3)Ph] and [(Xantphos)Pd(CF3)Ph]. J. Am. Chem. Soc.
2006, 128, 12644−12645. (b) Cho, E. J.; Senecal, T. D.; Kinzel, T.;
Zhang, Y.; Watson, D. A.; Buchwald, S. L. The palladium-catalyzed
trifluoromethylation of aryl chlorides. Science 2010, 328, 1679−1681.
(c) Nielsen, M. C.; Bonney, K. J.; Schoenebeck, F. Computational
ligand design for the reductive elimination of ArCF3 from a small bite
angle PdII complex: remarkable effect of a perfluoroalkyl phosphine.
Angew. Chem., Int. Ed. 2014, 53, 5903−5906. (d) Ferguson, D. M.;
Bour, J. R.; Canty, A. J.; Kampf, J. W.; Sanford, M. S. Stoichiometric
and catalytic aryl-perfluoroalkyl coupling at tri-tert-butylphosphine
palladium(II) complexes. J. Am. Chem. Soc. 2017, 139, 11662−11665.
(e) Ferguson, D. M.; Bour, J. R.; Canty, A. J.; Kampf, J. W.; Sanford,
M. S. Aryl-CF3 coupling from phosphinoferrocene-ligated palladium-
(II) complexes. Organometallics 2019, 38, 519−526.
(4) (a) Dubinina, G. G.; Ogikubo, J.; Vicic, D. A. Structure of
bis(trifluoromethyl)cuprate and its role in trifluoromethylation
reactions. Organometallics 2008, 27, 6233−6235. (b) Kaplan, P. T.;
Lloyd, J. A.; Chin, M. T.; Vicic, D. A. Comparative profiling of well-
defined copper catalysts and precatalysts for the trifluoromethylation
of aryl iodides. Beilstein J. Org. Chem. 2017, 13, 2297−2303.
(c) Martínez de Salinas, S.; Mudarra, A. L.; Odena, C.; Martínez
Belmonte, M.; Benet-Buchholz, J.; Maseras, F.; Perez-Temprano, M.
H. Exploring the role of coinage metallates in trifluoromethylation: a
combined experimental and theoretical study. Chem. - Eur. J. 2019, 25,
9390−9394. (d) Lu, Z.; Liu, H.; Leng, X.; Lan, Y.; Shen, Q. A key
intermediate in copper-mediated arene trifluoromethylation, [nBu4]-
[Cu(Ar)(CF3)3]: synthesis, characterization, and C(sp2)-CF3 reduc-
tive elimination. Angew. Chem., Int. Ed. 2019, 131, 8598−8602.
(5) (a) Winston, M. S.; Wolf, W. J.; Toste, F. D. Photoinitiated
oxidative addition of CF3I to gold(I) and facile aryl-CF3 reductive
elimination. J. Am. Chem. Soc. 2014, 136, 7777−7782. (b) Winston,
M. S.; Wolf, W. J.; Toste, F. D. Halide-dependent mechanisms of
reductive elimination from gold(III). J. Am. Chem. Soc. 2015, 137,
7921−7928.
(16) Control studies show that 1b is stable to water over the time
course of the experiment in the absence of oxidant. This suggests that
α-fluoride elimination occurs after the initial oxidation reaction.
(17) (a) Brown, J. M.; Guiry, P. J. Bite angle dependence of the rate
of reductive elimination from diphosphine palladium complexes.
Inorg. Chim. Acta 1994, 220, 249−259. (b) Marcone, J. E.; Moloy, K.
G. Kinetic study of reductive elimination from the complexes
(diphosphine)Pd(R)(CN). J. Am. Chem. Soc. 1998, 120, 8527−
8528. (c) Zuidema, E.; Van Leeuwen, P. W. M. N.; Bo, C. Reductive
elimination of organic molecules from palladium-diphosphine
complexes. Organometallics 2005, 24, 3703−3710.
(19) Trifluoromethyl Ni(III) complexes have been previously
reported to undergo Ni−CF3 homolysis at room temperature; see:
Zhang, C. P.; Wang, H.; Klein, A.; Biewer, C.; Stirnat, K.; Yamaguchi,
Y.; Xu, L.; Gomez-Benitez, V.; Vicic, D. A. A five-coordinate
nickel(II) fluoroalkyl complex as a precursor to a spectroscopically
detectable Ni(III) species. J. Am. Chem. Soc. 2013, 135, 8141−8144.
However, radical scavenging experiments with TEMPO are
inconsistent with the intermediacy of F3C• in the present system.
(20) The analogous reaction of (dppf)Ni(CF3)(4-FC6H4) (6b) with
FcPF6 afforded 1-CF3-4-F-C6H4 in 72% yield, and no Ph−CF3 was
detected. Furthermore, the addition of 75 equiv of H2O to this
transformation had minimal effect on the yield of 1-CF3-4-F-C6H4.
Collectively, these results show (i) that the Ph groups of the
phosphine ligands are not involved in this reaction and (ii) that
for complete details.
(21) The remaining mass balance is currently unclear. Attempts to
characterize the fate of the organic fragments were unsuccessful.
Addition of excess LiCl to the crude reaction mixture following
oxidation yielded a paramagnetic NMR spectrum consistent with
(dppf)NiCl2 as the primary nickel-containing product. See p S30 in
the Supporting Information for details.
(22) Clevenger, A. L.; Stolley, R. M.; Staudaher, N. D.; Al, N.;
Rheingold, A. L.; Vanderlinden, R. T.; Louie, J. Comprehensive study
of the reactions between chelating phosphines and Ni(cod)2.
Organometallics 2018, 37, 3259−3268.
(6) Bour, J. R.; Camasso, N. M.; Sanford, M. S. Oxidation of Ni(II)
to Ni(IV) with aryl electrophiles enables Ni(IV)-mediated Aryl-CF3
coupling. J. Am. Chem. Soc. 2015, 137, 8034−8037.
(7) Bour, J. R.; Camasso, N. M.; Meucci, E.; Kampf, J. W.; Canty, A.
J.; Sanford, M. S. Carbon-carbon bond forming reductive elimination
D
Organometallics XXXX, XXX, XXX−XXX