Journal of the American Chemical Society
Page 4 of 6
Sugisaki, K.; Sato, K.; Takui, T.; Yasuda, M. Synthesis and Characteriza-
tion of Dibenzo[a,f]Pentalene: Harmonization of the Antiaromatic and
Singlet Biradical Character. J. Am. Chem. Soc. 2017, 139, 15284.
(5) For selected recent reviews and reports: (a) Frederickson, C. K.;
Rose, B. D.; Haley, M. M. Explorations of the Indenofluorenes and Ex-
panded Quinoidal Analogues. Acc. Chem. Res. 2017, 50, 977. (b) Dressler,
J. J.; Teraoka, M.; Espejo, G. L.; Kishi, R.; Takamuku, S.; Gómez-García,
C. J.; Zakharov, L. N.; Nakano, M.; Casado, J.; Haley, M. M. Thiophene
and Its Sulfur Inhibit Indenoindenodibenzothiophene Diradicals from
Low-Energy Lying Thermal Triplets. Nat. Chem. 2018, 10, 1134. (c)
Dressler, J. J.; Zhou, Z.; Marshall, J. L.; Kishi, R.; Takamuku, S.; Wei, Z.;
Spisak, S. N.; Nakano, M.; Petrukhina, M. A.; Haley, M. M. Synthesis of
the Unknown Indeno[1,2-a]Fluorene Regioisomer: Crystallographic Char-
acterization of Its Dianion. Angew. Chem. Int. Ed. 2017, 56, 15363. (d)
Shimizu, A.; Tobe, Y. Indeno[2,1-a]Fluorene: An Air-Stable Ortho-
Quinodimethane Derivative. Angew. Chem. Int. Ed. 2011, 50, 6906. (e)
Liu, J.; Ma, J.; Zhang, K.; Ravat, P.; Machata, P.; Avdoshenko, S.; Hen-
nersdorf, F.; Komber, H.; Pisula, W.; Weigand, J. J.; Popov, A. A.; Berger,
R.; Müllen, K.; Feng, X. π-Extended and Curved Antiaromatic Polycyclic
Hydrocarbons. J. Am. Chem. Soc. 2017, 139, 7513. (f) Shimizu, A.; Kishi,
R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Hisaki, I.; Miyata, M.;
Tobe, Y. Indeno[2,1-b]Fluorene: A 20-π-Electron Hydrocarbon with Very
Low-Energy Light Absorption. Angew. Chem. Int. Ed. 2013, 52, 6076. (g)
Sbargoud, K.; Mamada, M.; Marrot, J.; Tokito, S.; Yassar, A.; Frigoli, M.
Diindeno[1,2-b:2',1'-n]Perylene: A Closed Shell Related Chichibabin’s
Hydrocarbon, the Synthesis, Molecular Packing, Electronic and Charge
Transport Properties. Chem. Sci. 2015, 6, 3402. (h) Ma, J.; Liu, J.; Baum-
garten, M.; Fu, Y.; Tan, Y.-Z.; Schellhammer, K. S.; Ortmann, F.; Cuni-
berti, G.; Komber, H.; Berger, R.; Müllen, K.; Feng, X. A Stable Saddle-
Shaped Polycyclic Hydrocarbon with an Open-Shell Singlet Ground State.
Angew. Chem. Int. Ed. 2017, 56, 3280. (i) Melidonie, J.; Liu, J.; Fu, Y.;
Weigand, J. J.; Berger, R.; Feng, X. Pyrene-Fused s-Indacene. J. Org.
Chem. 2018, 83, 6633. (j) Hsieh, Y.; Wu, C.-F.; Chen, Y.-T.; Fang, C.;
Wang, C.; Li, C.; Chen, L.; Cheng, M.; Chueh, C.; Chou, P.; Wu, Y. 5,14-
Diaryldiindeno[2,1-f:1',2'-j]Picene: A New Stable [7]Helicene with a
Partial Biradical Character. J. Am. Chem. Soc. 2018, 140, 14357. (k)
Majewski, M. A.; Chmielewski, P. J.; Chien, A.; Hong, Y.; Lis, T.; Wit-
wicki, M.; Kim, D.; Zimmerman, P. M.; Stępień, M. 5,10-
Dimesityldiindeno[1,2-a:2',1'-i]Phenanthrene: A Stable Biradicaloid De-
rived from Chichibabin’s Hydrocarbon. Chem. Sci. 2019, 10, 3413. (l) Ma,
J.; Zhang, K.; Schellhammer, K. S.; Fu, Y.; Komber, H.; Xu, C.; Popov, A.
A.; Hennersdorf, F.; Weigand, J. J.; Zhou, S.; Pisula, W.; Ortmann, F.;
Berger, R.; Liu, J.; Feng, X. Wave-Shaped Polycyclic Hydrocarbons with
Controlled Aromaticity. Chem. Sci. 2019, 10, 4025. (m) Lu, R.-Q.; Wu,
S.; Yang, L.-L.; Gao, W.-B.; Qu, H.; Wang, X.-Y.; Chen, J.-B.; Tang, C.;
Shi, H.-Y.; Cao, X.-Y. Stable Diindeno-Fused Corannulene Regioisomers
with Open-Shell Singlet Ground States and Large Diradical Characters.
Angew. Chem. Int. Ed. 2019, DOI: 10.1002/anie.201902028.
(6) (a) Breslow, R. Antiaromaticity. Acc. Chem. Res. 1973, 6, 393. (b)
Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. I. A. Aromaticity and Anti-
aromaticity: Electronic and Structural Aspects; Wiley-Interscience publi-
cation; J. Wiley & Sons, 1994. (c) Frederickson, C. K.; Zakharov, L. N.;
Haley, M. M. Modulating Paratropicity Strength in Diareno-Fused Anti-
aromatics. J. Am. Chem. Soc. 2016, 138, 16827. (d) Majzik, Z.; Pavliček,
N.; Vilas-Varela, M.; Pérez, D.; Moll, N.; Guitián, E.; Meyer, G.; Peña,
D.; Gross, L. Studying an Antiaromatic Polycyclic Hydrocarbon Adsorbed
on Different Surfaces. Nat. Commun. 2018, 9, 1198.
(7) (a) Abe, M. Diradicals. Chem. Rev. 2013, 113, 7011. (b) Y. Gopala-
krishna, T.; Zeng, W.; Lu, X.; Wu, J. From Open-Shell Singlet Diradica-
loids to Polyradicaloids. Chem. Commun. 2018, 54, 2186. (c) Zeng, Z.;
Shi, X.; Chi, C.; López Navarrete, J. T.; Casado, J.; Wu, J. Pro-Aromatic
and Anti-Aromatic π-Conjugated Molecules: An Irresistible Wish to Be
Diradicals. Chem. Soc. Rev. 2015, 44, 6578. (e) Kubo, T. Recent Progress
in Quinoidal Singlet Biradical Molecules. Chem. Lett. 2015, 44, 111. (f)
Nakano, M. Open-Shell-Character-Based Molecular Design Principles:
Applications to Nonlinear Optics and Singlet Fission. Chem. Rec. 2017,
17, 27. (g) Sun, Z.; Wu, J. Open-Shell Polycyclic Aromatic Hydrocarbons.
J. Mater. Chem. 2012, 22, 4151.
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI (Grants Number
JP15H05848 in Middle Molecular Strategy, JP18H01977,
JP18K19079 and JP18K14201). A.K. would like to thank the
Tonen General Sekiyu Research & Development Encouragement
Foundation and Iketani Science and Technology Foundation for
financial supports. We thank Dr. N. Kanehisa (Osaka University)
for the valuable advice regarding X-ray crystallography. We also
thank Prof. S. Kuwabata and Dr. T. Uematsu for the assistance
with electronic absorption measurements. Finally, we recognize
Dr. K. Inoue, (the Analytical Instrumentation Facility, Graduate
School of Engineering, Osaka University) for the assistance with
VT-NMR spectroscopy.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) (a) Hafner, K. Structure and Aromatic Character of Non-Benzenoid
Cyclically Conjugated Systems. Angew. Chem. Int. Ed. Engl. 1964, 3, 165.
(b) Nozoe, T. Topics in Nonbenzenoid Aromatic Chemistry; Wiley, 1973.
(c) Hafner, K. New Aspects of the Chemistry of Nonbenzenoid Polycyclic
Conjugated π-Electron Systems. Pure Appl. Chem. 1982, 54, 939. (d)
Tobe, Y. Non-Alternant Non-Benzenoid Aromatic Compounds: Past,
Present, and Future. Chem. Rec. 2015, 15, 86. (e) Tobe, Y. Quinodime-
thanes Incorporated in Non-Benzenoid Aromatic or Antiaromatic Frame-
works. Top. Curr. Chem. 2018, 376, 12.
(2) Gleiter, R.; Haberhauer, G.; Hoffmann, R. Aromaticity and Other
Conjugation Effects; Wiley-VCH, 2012.
(3) For selected reports: (a) Fukazawa, Y.; Aoyagi, M.; Itô, S. Naph-
tho[1,8-ab:4,5-a'b']Diazulene, the First Nonalternant Isomer of Dibenzop-
yrene. Tetrahedron Lett. 1981, 22, 3879. (b) Nakasuji, K.; Todo, E.; Mu-
rata, I. Azuleno[4,5,6-cd] Phenalene; A Novel Nonalternant Isomer of
Benzo[a] Pyrene. Angew. Chem. Int. Ed. Engl. 1977, 16, 784. (c) Todo,
E.; Yamamoto, K.; Murata, I. BENZO[4,5]CYCLOHEPT[1,2,3-
bc]ACENAPHTHYLENE
AND
BENZO[a]NAPHTH[3,4,4a,5-
cde]AZULENE. NONALTERNANT ISOMERS OF BENZO[a]PYRENE.
Chem. Lett. 1979, 8, 537. (d) Hibi, D.; Kitabayashi, K.; Fujita, K.; Takeda,
T.; Tobe, Y. Diindenopyrenes: Extended 1,6- and 1,8-
Pyrenoquinodimethanes with Singlet Diradical Characters. J. Org. Chem.
2016, 81, 3735. (e) Uehara, K.; Mei, P.; Murayama, T.; Tani, F.; Hayashi,
H.; Suzuki, M.; Aratani, N.; Yamada, H. An Anomalous Antiaromaticity
That Arises from the Cycloheptatrienyl Anion Equivalent. Eur. J. Org.
Chem. 2018, 2018, 4508. (f) Yamamoto, K.; Ie, Y.; Tohnai, N.; Kakiuchi,
F.; Aso, Y. Antiaromatic Character of Cycloheptatriene-Bis-Annelated
Indenofluorene Framework Mainly Originated from Heptafulvene Seg-
ment. Sci. Rep. 2018, 8, 17663. (g) Mishra, S.; Lohr, T. G.; Pignedoli, C.
A.; Liu, J.; Berger, R.; Urgel, J. I.; Müllen, K.; Feng, X.; Ruffieux, P.;
Fasel, R. Tailoring Bond Topologies in Open-Shell Graphene Nanostruc-
tures. ACS Nano 2018, 12, 11917.
(4) For selected recent reviews and reports: (a) Hopf, H. Pentalenes-
From Highly Reactive Antiaromatics to Substrates for Material Science.
Angew. Chem. Int. Ed. 2013, 52, 12224. (b) Saito, M. Synthesis and Reac-
tions of Dibenzo[a,e]Pentalenes. Symmetry 2010, 2, 950. (c) Kawase, T.;
Nishida, J. π-Extended Pentalenes: The Revival of the Old Compound
from New Standpoints. Chem. Rec. 2015, 15, 1045. (d) Levi, Z. U.; Tilley,
T. D. Synthesis and Electronic Properties of Extended, Fused-Ring Aro-
matic Systems Containing Multiple Pentalene Units. J. Am. Chem. Soc.
2010, 132, 11012. (e) Cao, J.; London, G.; Dumele, O.; Rekowski, M. v.
W.; Trapp, N.; Ruhlmann, L.; Boudon, C.; Stanger, A.; Diederich, F. The
Impact of Antiaromatic Subunits in [4n+2] π-Systems: Bispentalenes with
[4n+2] π-Electron Perimeters and Antiaromatic Character. J. Am. Chem.
Soc. 2015, 137, 7178. (f) Oshima, H.; Fukazawa, A.; Yamaguchi, S. Facile
Synthesis of Polycyclic Pentalenes with Enhanced Hückel Antiaromaticity.
Angew. Chem. Int. Ed. 2017, 56, 3270. (g) Sekine, K.; Schulmeister, J.;
Paulus, F.; Goetz, K. P.; Rominger, F.; Rudolph, M.; Zaumseil, J.; Hashmi,
A. S. K. Gold-Catalyzed Facile Synthesis and Crystal Structures of Ben-
zene-/Naphthalene-Based Bispentalenes as Organic Semiconductors.
Chem. Eur. J. 2019, 25, 216. (h) Konishi, A.; Okada, Y.; Nakano, M.;
(8) Clar, E. Polycyclic Hydrocarbons: Volume 1 and 2; Academic Press
Inc, 1964.
(9) Randić, M. Aromaticity of Polycyclic Conjugated Hydrocarbons.
Chem. Rev. 2003, 103, 3449.
(10) Wu, J.; Pisula, W.; Müllen, K. Graphenes as Potential Material for
Electronics. Chem. Rev. 2007, 107, 718.
ACS Paragon Plus Environment