COMMUNICATIONS
[14] a) M. Tordeux, C. Francese, C. Wakselman, J. Fluorine
Acknowledgements
Chem. 1989, 43, 27–34; b) T. Billard, S. Large, B. R.
Langlois, Tetrahedron Lett. 1997, 38, 65–68; c) S.
Potash, S. Rozen, J. Fluorine Chem. 2014, 168, 173–176;
d) K. Jouvin, C. Matheis, L. J. Goossen, Chem. Eur. J.
2015, 21, 14324–14327; e) B. Exner, B. Bayarmagnai, F.
Jia, L. J. Goossen, Chem. Eur. J. 2015, 21, 17220–17223;
f) B. Bayarmagnai, C. Matheis, K. Jouvin, L. J. Goos-
sen, Angew. Chem. 2015, 127, 5845–5848; Angew.
Chem. Int. Ed. 2015, 54, 5753–5756; g) C. Matheis, M.
Wang, T. Krause, L. Goossen, Synlett 2015, 26, 1628–
1632.
We thank the Heinrich-Bçll-Stiftung e.V. (scholarship to
B.B.) and the Cluster of Excellence RESOLV (EXC 1069)
funded by the Deutsche Forschungsgemeinschaft for financial
support.
References
[1] a) J. Wang, M. Sꢀnchez-Rosellꢅ, J. L. AceÇa, C. del Po-
zo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H.
Liu, Chem. Rev. 2014, 114, 2432–2506; b) P. Jeschke,
ChemBioChem 2004, 5, 570–589; c) W. K. Hagmann, J.
Med. Chem. 2008, 51, 4359–4369.
[2] a) O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011,
111, 4475–4521; b) T. Furuya, A. S. Kamlet, T. Ritter,
Nature 2011, 473, 470–477; c) T. Liang, C. N. Neumann,
T. Ritter, Angew. Chem. 2013, 125, 8372–8423; Angew.
Chem. Int. Ed. 2013, 52, 8214–8264; d) T. Liu, Q. Shen,
Eur. J. Org. Chem. 2012, 2012, 6679–6687; e) X.-F. Wu,
H. Neumann, M. Beller, Chem. Asian J. 2012, 7, 1744–
1754; f) X. Liu, C. Xu, M. Wang, Q. Liu, Chem. Rev.
2015, 115, 683–730.
[15] a) R. Honeker, J. B. Ernst, F. Glorius, Chem. Eur. J.
2015, 21, 8047–8051; b) T. Bootwicha, X. Liu, R. Pluta,
I. Atodiresei, M. Rueping, Angew. Chem. 2013, 125,
13093–13097; Angew. Chem. Int. Ed. 2013, 52, 12856–
12859; c) M. Rueping, X. Liu, T. Bootwicha, R. Pluta,
C. Merkens, Chem. Commun. 2014, 50, 2508–2511; d) J.
Luo, Z. Zhu, Y. Liu, X. Zhao, Org. Lett. 2015, 17,
3620–3623; e) C. Xu, Q. Shen, Org. Lett. 2015, 17,
4561–4563; f) Q. Xiao, Q. He, J. Li, J. Wang, Org. Lett.
2015, 17, 6090–6093; g) K. Liao, F. Zhou, J.-S. Yu, W.-
M. Gao, J. Zhou, Chem. Commun. 2015, 51, 16255–
16258; h) J.-J. Wu, J. Xu, X. Zhao, Chem. Eur. J. 2016,
22, 15265–15269.
[16] a) Q. Wang, F. Xie, X. Li, J. Org. Chem. 2015, 80, 8361–
8366; b) P. Luo, Q. Ding, Y. Ping, J. Hu, Org Biomol
Chem. 2016, 14, 2924–2929.
[17] a) C. Xu, Q. Shen, Org. Lett. 2014, 16, 2046–2049;
b) H.-Y. Xiong, T. Besset, D. Cahard, X. Pannecoucke,
J. Org. Chem. 2015, 80, 4204–4212.
[18] a) Q. Wang, Z. Qi, F. Xie, X. Li, Adv. Synth. Catal.
2015, 357, 355–360; b) T. Yang, L. Lu, Q. Shen, Chem.
Commun 2015, 51, 5479–5481.
[19] S. Munavalli, D. K. Rohrbaugh, D. I. Rossman, F. J.
Berg, G. W. Wagner, H. D. Durst, Synth. Commun.
2000, 30, 2847–2854.
[20] a) R. Pluta, P. Nikolaienko, M. Rueping, Angew. Chem.
2014, 126, 1676–1679; Angew. Chem. Int. Ed. 2014, 53,
1650–1653; b) K. Kang, C. Xu, Q. Shen, Org. Chem.
Front. 2014, 1, 294.
[21] X. Shao, C. Xu, L. Lu, Q. Shen, J. Org. Chem. 2015, 80,
3012–3021.
[3] A. Lishchynskyi, V. V. Grushin, J. Am. Chem. Soc.
2013, 135, 12584–12587.
[4] F. Toulgoat, S. Alazet, T. Billard, Eur. J. Org. Chem.
2014, 2014, 2415–2428.
[5] a) G. L. Trainor, J. Carbohydr. Chem. 1985, 4, 545–563;
b) K. N. Hojczyk, P. Feng, C. Zhan, M.-Y. Ngai, Angew.
Chem. 2014, 126, 14787–14791; Angew. Chem. Int. Ed.
2014, 53, 14559–14563.
[6] C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaita-
ni, E. J. Lien, J. Med. Chem. 1973, 16, 1207–1216.
[7] Scherer, Angew. Chem. 1939, 52, 457–459.
[8] S. Barata-Vallejo, S. Bonesi, A. Postigo, Org. Biomol.
Chem. 2016, 14, 7150–7182.
[9] a) Z. Weng, W. He, C. Chen, R. Lee, D. Tan, Z. Lai, D.
Kong, Y. Yuan, K.-W. Huang, Angew. Chem. 2013, 125,
1588–1592; Angew. Chem. Int. Ed. 2013, 52, 1548–1552;
b) X. Shao, X. Wang, T. Yang, L. Lu, Q. Shen, Angew.
Chem. 2013, 125, 3541–3544; Angew. Chem. Int. Ed.
2013, 52, 3457–3460; c) C. Chen, Y. Xie, L. Chu, R.-W.
Wang, X. Zhang, F.-L. Qing, Angew. Chem. 2012, 124,
2542–2545; Angew. Chem. Int. Ed. 2012, 51, 2492–2495;
d) L. D. Tran, I. Popov, O. Daugulis, J. Am. Chem. Soc.
2012, 134, 18237–18240.
[10] G. Teverovskiy, D. S. Surry, S. L. Buchwald, Angew.
Chem. 2011, 123, 7450–7452; Angew. Chem. Int. Ed.
2011, 50, 7312–7314.
[11] C.-P. Zhang, D. A. Vicic, J. Am. Chem. Soc. 2012, 134,
183–185.
[12] a) G. Danoun, B. Bayarmagnai, M. F. Gruenberg, L. J.
Goossen, Chem. Sci. 2014, 5, 1312; b) B. Bayarmagnai,
C. Matheis, E. Risto, L. J. Goossen, Adv. Synth. Catal.
2014, 356, 2343–2348; c) G. Danoun, B. Bayarmagnai,
M. Grꢂnberg, C. Matheis, E. Risto, L. Gooßen, Synthe-
sis 2014, 46, 2283–2286; d) C. Matheis, V. Wagner, L. J.
Goossen, Chem. Eur. J. 2016, 22, 79–82.
[22] a) C. Xu, B. Ma, Q. Shen, Angew. Chem. 2014, 126,
9470–9474; Angew. Chem. Int. Ed. 2014, 53, 9316–9320;
b) P. Zhang, M. Li, X.-S. Xue, C. Xu, Q. Zhao, Y. Liu,
H. Wang, Y. Guo, L. Lu, Q. Shen, J. Org. Chem. 2016,
81, 7486–7509; c) X. Liu, R. An, X. Zhang, J. Luo, X.
Zhao, Angew. Chem. 2016, 128, 5940–5944; Angew.
Chem. Int. Ed. 2016, 55, 5846–5850.
[23] A. Ferry, T. Billard, B. R. Langlois, E. Bacquꢆ, J. Org.
Chem. 2008, 73, 9362–9365.
[24] M. Li, J. Guo, X.-S. Xue, J.-P. Cheng, Org. Lett. 2016,
18, 264–267.
[25] P. Kirsch, G. V. Roeschenthaler, B. Bissky, A. Kolo-
meitsev, (Merck GmbH), German Patent DE-A1
10254597, 2003.
[26] W. Tyrra, D. Naumann, B. Hoge, Y. L. Yagupolskii, J.
Fluorine Chem. 2003, 119, 101–107.
[27] a) J. Xu, X. Mu, P. Chen, J. Ye, G. Liu, Org. Lett. 2014,
16, 3942–3945; b) G. Yin, I. Kalvet, U. Englert, F.
Schoenebeck, J. Am. Chem. Soc. 2015, 137, 4164–4172;
[13] G. K. S. Prakash, P. V. Jog, P. T. D. Batamack, G. A.
Olah, Science 2012, 338, 1324–1327.
Adv. Synth. Catal. 0000, 000, 0 – 0
4
ꢃ 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!