Journal of the American Chemical Society
Page 4 of 6
In summary, we have described a protocol for iron-catalyzed
Notes
1
2
3
4
5
6
7
8
dihydrosilylation reactions between aliphatic terminal alkynes
and primary silanes, which produces geminal bis(silanes) with
secondary silyl groups. Because the products contain Si–H
bonds, which permit various previously unreported
The authors declare no competing financial interest.
ACKNOWLEDGMENT
transformations, this protocol not only provides
a
straightforward route to geminal bis(silanes) but also
enhances the utility of these silane reagents. Work on
extending the substrate scope of the reaction and transforming
the geminal bis(silane) products obtained by means of this
protocol is underway in our laboratory and will be reported in
due course.
We thank the National Natural Science Foundation of China
(21625204), the “111” project (B06005) of the Ministry of
Education of China, the National Program for Special Support
of Eminent Professionals, and the Fundamental Research
Funds for the Central Universities for financial support. This
paper is dedicated to the 100th anniversary of Nankai
University.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Scheme 5. Transformations of the Products.
REFERENCES
a) Transformations of Si-H bonds of 6j
SiF2Ph
Si(OMe)2Ph
(c)
1. For selected recent reviews, see: (a) Bauer, I.; Knölker, H.-J. Iron
Catalysis in Organic Synthesis. Chem. Rev. 2015, 115, 3170. (b)
Greenhalgh, M. D.; Jones, A. S.; Thomas, S. P. Iron-Catalysed
Hydrofunctionalisation of Alkenes and Alkynes. ChemCatChem
2015, 7, 190. (c) Guo, N.; Zhu, S.-F. Iron-Catalyzed Hydrogenation
Reactions. Chin. J. Org. Chem. 2015, 35, 1383. (d) Shang, R.; Ilies,
L.; Nakamura, E. Iron-Catalyzed C–H Bond Activation. Chem. Rev.
2017, 117, 9086. (e) Chen, J.-H.; Lu, Z. Asymmetric
Hydrofunctionalization of Minimally Functionalized Alkenes via
Earth Abundant Transition Metal Catalysis, Org. Chem. Front.
2018, 5, 260.
2. Ojima, I. In The Chemistry of Organic Silicon Compounds, Vol.
1; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1989;
Chapter 25.
3. For a review, see: (a) Gao, L.; Zhang, Y.; Song, Z. Exploration
of Versatile Geminal Bis(silane) Chemistry Synlett 2013, 24, 139.
For selected examples, see: (b) Corriu, R. J. P.; Granier, M.;
SiH2Ph
C6H13
(a)
C6H13
7a
C6H13
SiF2Ph
, 81% yield
Si(OMe)2Ph
, 91% yield
SiH2Ph
6j
7f
(b)
(a)
R1
R2
(b)
Ph
Si
R3
Me
Me
O
R4
Ph
Si
O
O
Ph
Si
O
C6H13
Si
Si
Ph
O
Ph
C6H13
C6H13
O
O
Ph
O
Si
O
R1
O
O
O
R2
3 R4
R
R1,R2,R3,R4 = Me,
R1,,R3 = Ph, R2,R4
70% yield
7b,
=
Me Me
7d
,
7c
, 68% yield
H
, 68% yield
7e
, 76% yield
b) Olefination of 7b under neutral conditions
Ph
CsF (10 mol %)
Si(Pin)Ph
N
C6H13
C6H13
Ph
62% yield
+
4A MS, DMF, 80 oC, 24 h
Si(Pin)Ph
7b
8
Ph
H
c) Cross coupling and oxidation of 7a
Pd(tBu3P)2 (5 mol%)
tBuOK (3 equiv)
Si(OMe)2Ph
K2CO3/H2O2
Ar
Lanneau
G.
F.
Synthesis
and
Reactivity
of
C6H13
C6H13
ArI
+
dioxane, 80 oC, 16 h
rt, 6 h
Si(OMe)2Ph
OH
Bis(triethoxysilyl)methane, Tris(triethoxysilyl)methane and Some
Derivatives. J. Organometal. Chem. 1998, 562, 79. (c) Williams, D.
R.; Morales-Ramos, A. I.; Williams, C. M. Reactivity Studies of
3,3-Bis(trimethylsilyl)-2-Methyl-1-Propene in Lewis Acid-
Catalyzed Allylation Reactions. Org. Lett. 2006, 8, 4393. (d) Yin,
Z.; Liu, Z.; Huang, Z.; Chu, Y.; Hu, J.; Gao, L.; Song, Z. Synthesis
7a
72% yield
70% yield
58% yield
9a Ar = Ph
9b Ar = 4-OMeC6H4
9c Ar = 4-CF3C6H4
d) Potential Applications in Organic Silicon Materials
Ph
Si
[RhCl2(p-cymene)]2
C7H15
O
O
SiH2Ph
O
NaOH (10 mol%)
Ph
(2 mol%)
C6H13
O
Si
Si
of
Functionalized
γ‑Lactone
via
Sakurai
exo-
THF/H2O, 55 o
C
THF/H2O, 60 o
C
Si
O
O
n
SiH2Ph
6j
Si
O
Ph Ph
C7H15
Ph
Si
Cyclization/Rearrangement of 3,3-Bis(silyl) Enol Ester with a
Tethered Acetal. Org. Lett. 2015, 17, 1553. (e) Li, L.; Chu, Y.; Gao,
L.; Song, Z. Geminal Bis(silane)-Controlled Regio- and
Stereoselective Oxidative Heck Reaction of Enol Ethers with
Terminal Alkenes to Give Push–Pull 1,3-Dienes. Chem. Commun.
2015, 51, 15546. (f) Liu, Z.; Lin, X.; Yang, N.; Su, Z.; Hu, C.; Xiao,
P.; He, Y.; Song, Z. Unique Steric Effect of Geminal bis(silane) to
Control the High exo-Selectivity in Intermolecular Diels-Alder
Reaction. J. Am. Chem. Soc. 2016, 138, 1877. (g) Chu, Z.; Wang,
K.; Gao, L.; Song, Z. Chiral Crotyl Geminal Bis(silane): A Useful
Reagent for Asymmetric Sakurai Allylation by Selective
Desilylation-Enabled Chirality Transfer. Chem. Commun. 2017, 53,
3078. (h) Zhang, Y.; Guo, Q.; Sun, X.; Lu, J.; Cao, Y.; Pu, Q.; Chu,
Z.; Gao, L.; Song, Z. Total Synthesis of Bryostatin 8 Using an
Organosilane-Based Strategy. Angew. Chem. Int. Ed. 2018, 57, 942.
4. Corriu, R. J. P.; Granier, M.; Lanneau, G. Synthesis and
O
C7H15
Ph
12,
HO
HO
OH
Pd(dba)2 (2 mol%)
THF, 60 o
10
, 63% yield
77% yield
C
OH
Ph Ph
O
Ph
O
O
O
Si
Si
O
Si
Si
O
n
O
O
Ph
C7H15
C7H15
11
, 50% yield
(Mn = 4230, Mw/Mn = 1.77)
Reaction conditions: (a) 0.5-2 mol % [RuCl2(p-cymene)]2, diol,
THF/Et2O; (b) 10 mol % NaOH, pinacol, THF, 65 oC; (c) 5 mol %
CuI, 4 equiv CuCl2, 4 equiv CsF, Et2O.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, spectral data, and computational
study results. The Supporting Information is available free of
Reactivity
of
Bis(triethoxysilyl)methane,
Tris(triethoxysilyl)methane and Some Derivatives. J. Organometal.
Chem. 1998, 562, 79.
5. Liu, Z.; Tan, H.; Fu, T.; Xia, Y.; Qiu. D.; Zhang, Y.; Wang, J.
Pd(0)-Catalyzed Carbene Insertion into Si-Si and Sn-Sn Bonds. J.
Am. Chem. Soc. 2015, 137, 12800.
AUTHOR INFORMATION
Corresponding Author
6. Hazrati, H. Oestreich, M. Copper-Catalyzed Double C(sp3)-Si
Coupling of Geminal Dibromides: Ionic-to-Radical Switch in the
Reaction Mechanism. Org. Lett. 2018, 20, 5367.
* sfzhu@nankai.edu.cn
ACS Paragon Plus Environment