ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Phosphine-Catalyzed [4 þ 2] Annulation
of γ‑Substituent Allenoates:
Facile Access to Functionalized
Spirocyclic Skeletons
Erqing Li, You Huang,* Ling Liang, and Peizhong Xie
State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University,
Tianjin 300071, China
Received May 15, 2013
ABSTRACT
The first phosphine-catalyzed [4 þ 2] annulation of γ-substituted allenoates with 2-arylidene-1H-indene-1,3(2H)-diones is disclosed. In the
reaction, the γ-substituted allenoate serves as a new type of 1,4-dipolar synthon; this broadens the application of γ-substituted allenoates. This
method also offers a powerful approach to the construction of highly substituted spiro[4.5]dec-6-ene skeletons in excellent yields, and with
complete regioselectivity and high diastereoselectivity.
Spirocyclic skeletons are the structural centerpieces of a
wide variety of natural and synthetic compounds that
exhibit diverse biological activities. Consequently, ap-
proaches to the efficient synthesis of these molecules have
received considerable attention.1
Various methods such as organocatalysis2 and transition-
metal catalysis3 have previously been described in the
literature. However, drawbacks such as unsatisfactory
yields, tedious purification processes, and poor chemo-
and/or diastereoselectivities have restricted the application
of these approaches. The development of novel, straight-
forward, and flexible methods for the preparation of
spirocyclic compounds is therefore highly desirable.
Recently, because of their comparatively strong and
readily tunable nucleophilicities, phosphines have been
used as efficient catalysts in organic synthesis.4,5 A series
(1) (a) Ma, S.; Han, X. Q.; Krishnan, S.; Virgil, S. C.; Stoltz, B. M.
Angew. Chem., Int. Ed. 2009, 48, 8037. (b) Shangary, S. Proc. Natl. Acad.
Sci. U.S.A. 2008, 105, 3933. (c) Schulz, V.; Davoust, M.; Lemarie, M.;
Lohier, J.-F.; Santos, J. S. O.; Metzner, P.; Briere, J.-F. Org. Lett. 2007,
9, 1745. (d) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007,
46, 8748. (e) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem.
Soc. 2007, 129, 1020. (f) Ding, K. J. Am. Chem. Soc. 2005, 127, 10130. (g)
Chen, C.; Li, X.; Neumann, C. S.; Lo, M. M. C.; Schreiber, S. L. Angew.
Chem., Int. Ed. 2005, 44, 2249. (h) Lo, M. M. C.; Neumann, C. S.;
Nagayama, S.; Perlstein, E. O.; Schreiber, S. L. J. Am. Chem. Soc. 2004,
126, 16077. (i) Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003,
42, 36. (j) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
(2) (a) Tan, B.; Candeias, N. R.; Barbas, C. F., III. Nat. Chem. 2011,
3, 473. (b) Tan, B.; Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc.
2011, 133, 4672. (c) Tan, B.; Hernandez-Torres, G.; Barbas, C. F., III.
J. Am. Chem. Soc. 2011, 133, 12354. (d) Cao, Y.; Jiang, X.; Liu, L.; Shen,
F.; Zhang, F.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 9124. (e)
Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50,
7837. (f) Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am.
Chem. Soc. 2010, 132, 15328. (g) Bencivenni, G.; Wu, L.-Y.; Mazzanti,
A.; Giannichi, B.; Pesciaioli, F.; Song, M.-P.; Bartoli, G.; Melchiorre, P.
Angew. Chem., Int. Ed. 2009, 48, 7200.
(4) For reviews, see: (a) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev.
2009, 38, 3102. (b) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008,
37, 1140. (c) Denmark, S. E.; Beutner, G. L. Angew. Chem., Int. Ed. 2008,
47, 1560. (d) Nair, V.; Menon, R. S.; Sreekanth, A. R.; Abhilash, N.;
Biju, A. T. Acc. Chem. Res. 2006, 39, 520. (e) Lu, X.; Du, Y.; Lu, C. Pure
Appl. Chem. 2005, 77, 1985. (f) Methot, J. L.; Roush, W. R. Adv. Synth.
Catal. 2004, 346, 1035. (g) Valentine, D. H.; Hillhouse, J. H. Synthesis
2003, 317. (h) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
(5) Some example on Domino reactions, see: (a) Yao, C.; Xiao, Z.;
Liu, R.; Li, T.; Jiao, W.; Yu, C. Chem.;Eur. J. 2013, 19, 456. (b) Ma, C.;
Jia, Z.; Liu, J.; Zhou, Q.; Dong, L.; Chen, Y. Angew. Chem., Int. Ed.
2013, 52, 948. (c) Zhou, S.-L.; Li, J.-L.; Dong, L.; Chen, Y.-C. Org. Lett.
2011, 13, 5874.
(3) (a) Hanhan, N. V.; Ball-Jones, N. R.; Tran, N. T.; Franz, A. K.
Angew. Chem., Int. Ed. 2011, 50, 1. (b) Badillo, J. J.; Arevalo, G. E.;
Fettinger, J. C.; Franz, A. K. Org. Lett. 2011, 13, 418. (c) Hojo, D.;
Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2009, 48, 8129. (d)
Tanaka, K.; Otake, Y.; Sagae, H.; Noguchi, K.; Hirano, M. Angew.
Chem., Int. Ed. 2008, 47, 1312. (e) Trost, B. M.; Cramer, N.; Silverman,
S. M. J. Am. Chem. Soc. 2007, 129, 12396. (c) Basavaiah, D.; Reddy,
K. R. Org. Lett. 2007, 9, 57.
r
10.1021/ol401249e
XXXX American Chemical Society