Organic Letters
Letter
Kumar, R.; Mukhtar, H.; Ahmad, N. Mol. Med. 2011, 17, 134−143.
(e) Naithani, R. Mini-Rev. Med. Chem. 2008, 8, 657−668.
trifluoromethylselenolation of aryl iodides and bromides. Aryl
iodides appeared to require a low dosage of the catalyst, and
excess bipyridine ligand relative to Ni(COD)2 did not
significantly affect the yields. Aryl bromides required a higher
percentage of Ni(COD)2 and bipyridine, and an excess of
bipyridine relative to Ni(COD)2 considerably inhibited the
trifluoromethylselenolation reactions. These results suggest that
the activation of aryl iodides occurs more readily than the
bromides and that unproductive ligand coordination is
competitive with the activation of the aryl bromide substrates.
Importantly, the challenging aryl chloride substrates could be
trifluoromethylselenolated by employing dppf as the optimal
ligand on nickel. This work represents the first report for the
direct trifluoromethylselenolation of aryl chlorides. Finally, the
reactions developed herein are amenable to the synthesis of
potentially bioactive molecules and drug analogues and could
serve as a promising resource for the construction of
trifluoromethyl selenides for life science applications. A more
detailed investigation of the reaction mechanisms is currently
underway in our laboratories.
(4) Recent reviews (selected): (a) Chachignon, H.; Cahard, D. Chin.
J. Chem. 2016, 34, 445−454. (b) Sperger, T.; Sanhueza, I. A.;
Schoenebeck, F. Acc. Chem. Res. 2016, 49, 1311−1319. (c) Lin, J.-H.;
Ji, Y.-L.; Xiao, J.-C. Curr. Org. Chem. 2015, 19, 1541−1553. (d) Shao,
X.; Xu, C.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48, 1227−1236.
(e) Zhang, K.; Xu, X.; Qing, F. Youji Huaxue 2015, 35, 556−569.
(f) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731−
764. (g) Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014,
2014, 2415−2428.
(5) (a) Back, T. G. Organoselenium Chemistry: A Practical Approach;
Oxford University Press: Oxford, UK, 1999; Practical Approach in
Chemistry Series. (b) Wirth, T. Organoselenium Chemistry: Synthesis
and Reactions; Wiley-VCH: Weinheim, 2011.
(6) (a) Billard, T.; Langlois, B. R. Tetrahedron Lett. 1996, 37, 6865−
6868. (b) Billard, T.; Large, S.; Langlois, B. R. Tetrahedron Lett. 1997,
38, 65−68. (c) Nikolaienko, P.; Rueping, M. Chem. - Eur. J. 2016, 22,
2620−2623. (d) Large, S.; Roques, N.; Langlois, B. R. J. Org. Chem.
2000, 65, 8848−8856. (e) Potash, S.; Rozen, S. J. Org. Chem. 2014, 79,
11205−11208. (f) Pooput, C.; Medebielle, M.; Dolbier, W. R., Jr. Org.
́
Lett. 2004, 6, 301−303. (g) Pooput, C.; Dolbier, W. R., Jr.; Medebielle,
M. J. Org. Chem. 2006, 71, 3564−3568. (h) Cherkupally, P.; Beier, P.
Tetrahedron Lett. 2010, 51, 252−255. (i) Blond, G.; Billard, T.;
Langlois, B. R. Tetrahedron Lett. 2001, 42, 2473−2475.
ASSOCIATED CONTENT
* Supporting Information
■
S
(7) (a) Kondratenko, N. V.; Kolomeytsev, A. A.; Popov, V. I.;
Yagupolskii, L. M. Synthesis 1985, 1985, 667−669. (b) Feldhoff, R.;
Haas, A.; Lieb, M. J. Fluorine Chem. 1994, 67, 245−251. (c) Fang, W.-
Y.; Dong, T.; Han, J.-B.; Zha, G.-F.; Zhang, C.-P. Org. Biomol. Chem.
2016, 14, 11502−11509. (d) Glenadel, Q.; Ismalaj, E.; Billard, T. J.
Org. Chem. 2016, 81, 8268−8275. (e) Magnier, E.; Wakselman, C.
Collect. Czech. Chem. Commun. 2002, 67, 1262−1266.
The Supporting Information is available free of charge on the
Experimental information, reaction condition optimiza-
tion, and NMR spectra (PDF)
(8) (a) Chen, C.; Hou, C.; Wang, Y.; Hor, T. S. A.; Weng, Z. Org.
Lett. 2014, 16, 524−527. (b) Chen, C.; Ouyang, L.; Lin, Q.; Liu, Y.;
Hou, C.; Yuan, Y.; Weng, Z. Chem. - Eur. J. 2014, 20, 657−661.
(c) Wang, Y.; You, Y.; Weng, Z. Org. Chem. Front. 2015, 2, 574−577.
(d) Wang, J.; Zhang, M.; Weng, Z. J. Fluorine Chem. 2017, 193, 24−32
and references cited therein.
(9) Tyrra, W.; Naumann, D.; Yagupolskii, Y. L. J. Fluorine Chem.
2003, 123, 183−187.
(10) (a) Matheis, C.; Wagner, V.; Goossen, L. J. Chem. - Eur. J. 2016,
22, 79−82. (b) Matheis, C.; Krause, T.; Bragoni, V.; Goossen, L. J.
Chem. - Eur. J. 2016, 22, 12270−12273. (c) Lefebvre, Q.; Pluta, R.;
Rueping, M. Chem. Commun. 2015, 51, 4394−4397.
(11) Aufiero, M.; Sperger, T.; Tsang, A. S.-K.; Schoenebeck, F.
Angew. Chem., Int. Ed. 2015, 54, 10322−10326.
(12) Zhang, C.-P.; Vicic, D. A. J. Am. Chem. Soc. 2012, 134, 183−185.
(13) Yin, G.; Kalvet, I.; Englert, U.; Schoenebeck, F. J. Am. Chem. Soc.
2015, 137, 4164−4172.
(14) (a) Tamaru, Y. Modern Organonickel Chemistry; Wiley-VCH:
Weinheim, 2005. (b) Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270−5298.
(15) Kalvet, I.; Guo, Q.; Tizzard, G. J.; Schoenebeck, F. ACS Catal.
2017, 7, 2126−2132.
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
C.P.Z. thanks the Wuhan University of Technology, the
Fundamental Research Funds for the Central Universities, the
National Natural Science Foundation of China (21602165), the
“Chutian Scholar” Program from Department of Education of
Hubei Province (China), the “Hundred Talent” Program of
Hubei Province, and the Wuhan Youth Chen-Guang Project
(2016070204010113) for financial support. D.A.V. thanks the
Office of Basic Energy Sciences of the U.S. Department of
Energy (DE-SC0009363) for support of this work.
REFERENCES
■
(1) (a) Kirsch, P. Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications, 2nd ed.; Wiley-VCH: Weinheim, 2013.
(b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology;
Wiley: Chichester, 2009.
(2) (a) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165−
195. (b) Hansch, C.; Leo, A. Substituent Constant for Correlation
Analysis in Chemistry and Biology; Wiley: New York, 1979.
(3) (a) Ganther, H. E. Carcinogenesis 1999, 20, 1657−1666.
(b) Papp, L. V.; Holmgren, A.; Khanna, K. K. Antioxid. Redox
Signaling 2010, 12, 793−795. (c) Rayman, M. P. Proc. Nutr. Soc. 2005,
64, 527−542. (d) Ledesma, M. C.; Jung-Hynes, B.; Schmit, T. L.;
D
Org. Lett. XXXX, XXX, XXX−XXX