ACS Medicinal Chemistry Letters
Letter
(10) Molina, D. M.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson,
E. A.; Dan, C.; Sreekumar, L.; Cao, Y.; Nordlund, P. Monitoring Drug
Target Engagement in Cells and Tissues Using the Cellular Thermal
Shift Assay. Science 2013, 341, 84−87.
(11) Lomenick, B.; Hao, R.; Jonai, N.; Chin, R. M.; Aghajan, M.;
Warburton, S.; Wang, J.; Wu, R. P.; Gomez, F.; Loo, J. A.;
Wohlschlegel, J. A.; Vondriska, T. M.; Pelletier, J.; Herschman, H.
R.; Clardy, J.; Clarke, C. F.; Huang, J. Target identification using drug
affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. U. S.
A. 2009, 106, 21984−21989.
Author Contributions
S.J.W. and F.S.C. synthesized compounds. S.J.W. performed
affinity purification proteomic experiments. S.J.W. and J.D.M.
processed and analyzed LC−MS data. S.J.W. purified
recombinant proteins. S.J.W. and S.Y.H. performed enzyme
assays. J.D.E. and B.T.R. performed native mass spectrometry
and interpreted the data. S.J.W. and B.R.M. designed
experiments and wrote the paper.
Funding
(12) Shalem, O.; Sanjana, N. E.; Hartenian, E.; Shi, X.; Scott, D. A.;
Mikkelsen, T. S.; Heckl, D.; Ebert, B. L.; Root, D. E.; Doench, J. G.;
Zhang, F. Genome-Scale CRISPR-Cas9 Knockout Screening in
Human Cells. Science 2014, 343, 84−87.
(13) Toyoda, T.; Sugimoto, H.; Yamashita, S. Sequence, expression
in Escherichia coli, and characterization of lysophospholipase II1.
Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 1999, 1437, 182−193.
(14) Manna, J. D.; Wepy, J. A.; Hsu, K.-L.; Chang, J. W.; Cravatt, B.
F.; Marnett, L. J. Identification of the Major Prostaglandin Glycerol
Ester Hydrolase in Human Cancer Cells. J. Biol. Chem. 2014, 289,
33741−33753.
(15) Adibekian, A.; Martin, B. R.; Chang, J. W.; Hsu, K. L.; Tsuboi,
K.; Bachovchin, D. A.; Speers, A. E.; Brown, S. J.; Spicer, T.;
Fernandez-Vega, V.; Ferguson, J.; Cravatt, B. F.; Hodder, P.; Rosen, H.
Characterization of a Selective, Reversible Inhibitor of Lysophospho-
lipase 2 (LYPLA2). In Probe Reports from the NIH Molecular Libraries
Program; National Institutes of Health: Bethesda, MD, 2010.
(16) Davda, D.; Martin, B. R. Acyl protein thioesterase inhibitors as
probes of dynamic S-palmitoylation. MedChemComm 2014, 5, 268−
276.
(17) Chen, B.; Zheng, B.; DeRan, M.; Jarugumilli, G. K.; Fu, J.;
Brooks, Y. S.; Wu, X. ZDHHC7-mediated S-palmitoylation of Scribble
regulates cell polarity. Nat. Chem. Biol. 2016, 12, 686−693.
(18) Hernandez, J., Davda, D.; Cheung, S.; Kit, M.; Majmudar, J. D.;
Won, S. J.; Gang, M.; Pasupuleti, S.; Choi, A.; Bartkowiak, C.; Martin,
B. R. APT2 inhibition restores Scribble localization and S-
palmitoylation in Snail-transformed cells. Cell Chem. Biol. DOI:
(19) Won, S. J.; Davda, D.; Labby, K. J.; Hwang, S. Y.; Pricer, R. E.;
Majmudar, J. D.; Armacost, K. A.; Rodriguez, L. A.; Rodriguez, C. L.;
Chong, F. S.; Torossian, K. A.; Palakurthi, J.; Hur, E. S.; Meagher, J. L.;
Brooks, C. L.; Stuckey, J. A.; Martin, B. R. Molecular mechanism for
isoform-selective inhibition of acyl protein thioesterases 1 and 2
(APT1 and APT2). ACS Chem. Biol. 2016, 11 (12), 3374−3382.
(20) Hofstadler, S. A.; Sannes-Lowery, K. A. Applications of ESI-MS
in drug discovery: interrogation of noncovalent complexes. Nat. Rev.
Drug Discovery 2006, 5, 585−595.
(21) Distler, U.; Kuharev, J.; Navarro, P.; Levin, Y.; Schild, H.;
Tenzer, S. Drift time-specific collision energies enable deep-coverage
data-independent acquisition proteomics. Nat. Methods 2013, 11,
167−170.
(22) Huber, K. V. M; Salah, E.; Radic, B.; Gridling, M.; Elkins, J. M.;
Stukalov, A.; Jemth, A.-S.; Gokturk, C.; Sanjiv, K.; Stromberg, K.;
Pham, T.; Berglund, U. W.; Colinge, J.; Bennett, K. L.; Loizou, J. I.;
Helleday, T.; Knapp, S.; Superti-Furga, G. Stereospecific targeting of
MTH1 by (S)-crizotinib as an anticancer strategy. Nature 2014, 508,
222−227.
(23) Knezevic, C. E.; Wright, G.; Remsing Rix, L. L.; Kim, W.;
Kuenzi, B. M.; Luo, Y.; Watters, J. M.; Koomen, J. M.; Haura, E. B.;
Monteiro, A.N.; Radu, C.; Lawrence, H. R.; Rix, U. Proteome-wide
Profiling of Clinical PARP Inhibitors Reveals Compound-Specific
Financial support for these studies was provided by the
National Institutes of Health R00 CA151460, DP2 GM114848,
the American Heart Association 14POST20420040 (J.D.M.),
and the University of Michigan.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We would like to thank Dahvid Davda for helpful advice on
interpretation of kinetic data.
ABBREVIATIONS
■
ABPP, activity-based protein profiling; APT, acyl protein
thioesterase; FP, fluorophosphonate; TAMRA, tetramethyl-6-
carboxyrhodamine
REFERENCES
■
(1) Niphakis, M. J.; Cravatt, B. F. Enzyme Inhibitor Discovery by
Activity-Based Protein Profiling. Annu. Rev. Biochem. 2014, 83, 341−
377.
(2) Adibekian, A.; Martin, B. R.; Wang, C.; Hsu, K. L.; Bachovchin,
D. A.; Niessen, S.; Hoover, H.; Cravatt, B. F. Click-generated triazole
ureas as ultrapotent in vivo-active serine hydrolase inhibitors. Nat.
Chem. Biol. 2011, 7, 469−478.
(3) Dekker, F. J.; Rocks, O.; Vartak, N.; Menninger, S.; Hedberg, C.;
Balamurugan, R.; Wetzel, S.; Renner, S.; Gerauer, M.; Scholermann,
B.; Rusch, M.; Kramer, J. W.; Rauh, D.; Coates, G. W.; Brunsveld, L.;
Bastiaens, P. I.; Waldmann, H. Small-molecule inhibition of APT1
affects Ras localization and signaling. Nat. Chem. Biol. 2010, 6, 449−
456.
(4) Li, W.; Blankman, J. L.; Cravatt, B. F. A Functional Proteomic
Strategy to Discover Inhibitors for Uncharacterized Hydrolases. J. Am.
Chem. Soc. 2007, 129, 9594−9595.
(5) Cognetta, A. B., 3rd; Niphakis, M. J.; Lee, H. C.; Martini, M. L.;
Hulce, J. J.; Cravatt, B. F. Selective N-Hydroxyhydantoin Carbamate
Inhibitors of Mammalian Serine Hydrolases. Chem. Biol. 2015, 22,
928−937.
(6) Chang, J. W.; Cognetta, A. B.; Niphakis, M. J.; Cravatt, B. F.
Proteome-Wide Reactivity Profiling Identifies Diverse Carbamate
Chemotypes Tuned for Serine Hydrolase Inhibition. ACS Chem. Biol.
2013, 8, 1590−1599.
(7) Adibekian, A.; Martin, B. R.; Chang, J. W.; Hsu, K. L.; Tsuboi, K.;
Bachovchin, D. A.; Speers, A. E.; Brown, S. J.; Spicer, T.; Fernandez-
Vega, V.; Ferguson, J.; Hodder, P. S.; Rosen, H.; Cravatt, B. F.
Confirming target engagement for reversible inhibitors in vivo by
kinetically tuned activity-based probes. J. Am. Chem. Soc. 2012, 134,
10345−10348.
(8) Bantscheff, M.; Eberhard, D.; Abraham, Y.; Bastuck, S.; Boesche,
M.; Hobson, S.; Mathieson, T.; Perrin, J.; Raida, M.; Rau, C.; Reader,
V.; Sweetman, G.; Bauer, A.; Bouwmeester, T.; Hopf, C.; Kruse, U.;
Neubauer, G.; Ramsden, N.; Rick, J.; Kuster, B.; Drewes, G.
Quantitative chemical proteomics reveals mechanisms of action of
clinical ABL kinase inhibitors. Nat. Biotechnol. 2007, 25, 1035−1044.
(9) Winger, J. A.; Hantschel, O.; Superti-Furga, G.; Kuriyan, J. The
structure of the leukemia drug imatinib bound to human quinone
reductase 2 (NQO2). BMC Struct. Biol. 2009, 9, 7.
(24) Martin, B. R.; Wang, C.; Adibekian, A.; Tully, S. E.; Cravatt, B.
F. Global profiling of dynamic protein palmitoylation. Nat. Methods
2012, 9, 84−89.
(25) Jecklin, M. C.; Touboul, D.; Jain, R.; Toole, E. N.; Tallarico, J.;
Drueckes, P.; Ramage, P.; Zenobi, R. Affinity Classification of Kinase
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX