(m, 6H). 13C NMR d(CDCl3): 106.7 (t, 2J(19F–13C) = 26 Hz, para),
118.3 (m, ortho), 135.7, (t, 3J(19F–13C) = 5.4 Hz, ipso), 163.6 (dd,
11 S. Lachaize and S. Sabo-Etienne, Eur. J. Inorg. Chem., 2006, 2115.
12 A. L. Osipov, S. F. Vyboishchikov, K. Y. Dorogov, L. G. Kuzmina,
J. A. K. Howard, D. A. Lemenovskii and G. I. Nikonov, Chem.
Commun., 2005, 3349.
3
1
1J(19F–13C) = 252 Hz, J(19F–13C) 11 Hz, meta). 19F{ H} NMR
1
d(CDCl3): −109.65 (s). 19F NMR d(CDCl3): −109.65 (m). 29Si{ H}
13 S. K. Ignatov, N. H. Rees, B. R. Tyrrell, S. R. Dubberley, A. G.
Razuvaev, P. Mountford and G. I. Nikonov, Chem.–Eur. J., 2004, 10,
4991.
14 I. Atheaux, F. Delpech, B. Donnadieu, S. Sabo-Etienne, B. Chaudret,
K. Hussein, J. C. Barthelat, T. Braun, S. B. Duckett and R. N. Perutz,
Organometallics, 2002, 21, 5347.
NMR d(CDCl3): −17.4 (m). 29Si NMR d(CDCl3): −17.4 (d of
1
multiplets, J(29Si–1H) = 212 Hz). Mr = 368.348 g mol−1. MS
(EI), m/z (relative intensity): 368 (0.58), 254 (1).
15 G. I. Nikonov, L. G. Kuzmina and J. A. K. Howard, J. Chem. Soc.,
Dalton Trans., 2002, 3037.
16 W. Scherer, G. Eickerling, M. Tafipolsky, G. S. McGrady, P. Sirsch and
N. P. Chatterton, Chem. Commun., 2006, 2986.
Conclusions
We have shown that although reactive, hypervalent hydridosilicates
of the form [R3SiHX]− (where X = H or F) are amenable to study
and are isolable; hence they can no longer be thought to exist
only as transitory intermediates in reactions. The hypervalent H–
Si–H unit does not seem to engage in intermolecular hydrogen
bonding, but prefers instead to interact in an electrostatic manner
with a metal cation forming a hydride bridge; when a suitable
cation is not available for this type of interaction a TBP ar-
rangement with axial hydrides persists. Qualititative observations
suggest that the sequestered cation of 5 leads to a more air-
and moisture-stable compound. Accessibility of the cation also
appears to enhance the proclivity of [Ph3SiH2]− to engage hydride
exchange reactions. We have also shown that although silicon has
a propensity to become hypervalent, this appears to be somewhat
dependent on the substituents attached to the silicon centre.
NMR spectroscopic data for the hypervalent hydridosilicates and
fluorosilicates reported here are remarkably consistent across all
of the systems, suggesting a similar TBP arrangement with axial
H–Si–H and H–Si–F units in each case. In all of the systems ligand
redistribution reactions of hydride, fluoride and phenyl groups are
highly prevalent.
17 M. Ichinohe, A. Sekiguchi, M. Takahashi and H. Sakurai, Bull. Chem.
Soc. Jpn., 1999, 72, 1905.
18 A. Sekiguchi, M. Ichinohe, M. Takahashi, C. Kabuto and H. Sakurai,
Angew. Chem., Int. Ed. Engl., 1997, 36, 1533.
19 B. Goldfuss, P. V. Schleyer, S. Handschuh, F. Hampel and W. Bauer,
Organometallics, 1997, 16, 5999.
20 K. Junge, E. Popowski, R. Kempe and W. Baumann, Z. Anorg. Allg.
Chem., 1998, 624, 1369.
21 J. Schneider, E. Popowski, K. Junge and H. Reinke, Z. Anorg. Allg.
Chem., 2001, 627, 2680.
22 T. Matsuo, H. Watanabe, M. Ichinohe and A. Sekiguchi, Inorg. Chem.
Commun., 1999, 2, 510.
23 H. Pritzkow, T. Lobreyer, W. Sundermeyer, N. Hommes and P.
Vonragueschleyer, Angew. Chem., Int. Ed. Engl., 1994, 33, 216.
24 N. Wiberg, W. Niedermayer, H. Noth and M. Warchhold, J. Organomet.
Chem., 2001, 628, 46.
25 M. J. Bearpark, G. S. McGrady, P. D. Prince and J. W. Steed, J. Am.
Chem. Soc., 2001, 123, 7736.
26 R. J. P. Corriu, C. Guerin, B. Henner and Q. J. Wang, Organometallics,
1991, 10, 2297.
27 R. Corriu, C. Guerin, B. Henner and Q. Wang, J. Organomet. Chem.,
1989, 365, C7.
28 B. Becker, R. Corriu, C. Guerin, B. Henner and Q. Wang, J. Organomet.
Chem., 1989, 359, C33.
29 P. D. Prince, Ph.D. Thesis, King’s College London, 2003.
30 N. Rot, T. Nijbacker, R. Kroon, F. J. J. de Kanter, F. Bickelhaupt, M.
Lutz and A. L. Spek, Organometallics, 2000, 19, 1319.
31 R. J. P. Corriu, C. Guerin, B. J. L. Henner and Q. J. Wang,
Organometallics, 1991, 10, 3574.
32 J. Allemand and R. Gerdil, Cryst. Struct. Commun., 1979, 8, 927.
33 C. Glidewell and G. M. Sheldrick, J. Chem. Soc. A, 1971, 3127.
34 A. Bondi, J. Phys. Chem., 1964, 68, 441.
35 S. R. Gunn and L. G. Green, J. Am. Chem. Soc., 1958, 80, 4782.
36 J. C. Ma and D. A. Dougherty, Chem. Rev., 1997, 97, 1303.
37 E. Weiss, G. Hencken and H. Kuhr, Chem. Ber., 1970, 103, 2868.
38 R. J. P. Corriu, C. Guerin, B. J. L. Henner and Q. Wang, J. Organomet.
Chem., 1992, 439, C1.
Acknowledgements
We thank the EPSRC for a studentship (to PDP), Dr Matthias
Gutmann (Rutherford Appleton Lab.) for his efforts with the
neutron structure of 1D, the Royal Society for provision of a
microscope facility, and Prof. Alex Bain (McMaster University,
Ontario, Canada) for help with analysis of the NMR experiments
and for the MEXICO program.
39 A. D. Bain, MEXICO 3.0, 2002, http://www.chemistry.mcmaster.
ca/∼bain/mexmanc.html.
40 J. L. Brefort, R. Corriu, C. Guerin and B. Henner, J. Organomet. Chem.,
1989, 370, 9.
41 B. Becker, R. J. P. Corriu, C. Guerin and B. J. L. Henner, J. Organomet.
Chem., 1989, 369, 147.
Notes and references
42 R. Damrauer, B. Oconnell, S. E. Danahey and R. Simon,
Organometallics, 1989, 8, 1167.
43 S. Yamaguchi, S. Akiyama and K. Tamao, Organometallics, 1999, 18,
2851.
44 R. J. P. Corriu and J. C. Young, Hypervalent Silicon Compounds, in
The Silicon Heteroatom Bond, ed. Z. Rappoport and S. Patai, John
Wiley & Sons, Chichester, 1991, p. 1.
45 B. Becker, R. J. P. Corriu, C. Guerin, B. Henner and Q. Wang,
J. Organomet. Chem., 1989, 368, C25.
46 H. A. Bent, Chem. Rev., 1961, 61, 275.
1 G. S. McGrady and J. W. Steed, Hypervalent Compounds, in Encyclo-
pedia of Inorganic Chemistry 2, ed. R. B. King, Wiley, Chichester, 2005,
p. 1938.
2 E. P. A. Couzijn, A. W. Ehlers, M. Schakel and K. Lammertsma, J. Am.
Chem. Soc., 2006, 128, 13634.
3 R. Z. Mu, Z. G. Liu, Z. Q. Liu, L. Yang, L. M. Wu and Z. L. Liu,
J. Chem. Res. (S), 2005, 469.
4 M. Nakash, D. Gut and M. Goldvaser, Inorg. Chem., 2005, 44, 1023.
5 A. K. Sahoo, T. Oda, Y. Nakao and T. Hiyama, Adv. Synth. Catal.,
2004, 346, 1715.
47 R. G. Cavell, J. A. Gibson and K. I. The, J. Am. Chem. Soc., 1977, 99,
6 M. Nakash, M. Goldvaser and I. Goldberg, Inorg. Chem., 2004, 43,
5792.
7841.
48 F. H. Allen, Acta Crystallogr., Sect. B, 2002, 58, 380.
49 R. A. Benkeser and F. J. Riel, J. Am. Chem. Soc., 1951, 73, 3472.
50 H. Ohmura, H. Matsuhashi, M. Tanaka, M. Kuroboshi, T. Hiyama, Y.
Hatanaka and K. Goda, J. Organomet. Chem., 1995, 499, 167.
51 Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276,
307.
7 L. N. Parshina, L. A. Oparina, M. Y. Khil’ko and B. A. Trofimov,
J. Organomet. Chem., 2003, 665, 246.
8 G. I. Nikonov, Adv. Organomet. Chem., 2005, 53, 217.
9 M. J. Paterson, N. P. Chatterton and G. S. McGrady, New J. Chem.,
2004, 28, 1434.
10 S. F. Vyboishchikov and G. I. Nikonov, Chem.–Eur. J., 2006, 12, 8518.
This journal is
The Royal Society of Chemistry 2008
Dalton Trans., 2008, 271–282 | 281
©