Zheng, Liu & Wang
FULL PAPER
methylazinylol (3a) as the final product.
mate oxidant under ligand-free and additive-free condi-
tions. The study of the substrate scope showed that var-
ious N-heterocyclic compounds were converted into the
corresponding aldehydes with good to excellent yields.
Additionally, a well combination of oxidations of het-
erobenzylic methylenes with trifluoromethylation in
one-pot was realized to synthesize a set of trifluoro-
methylazinylketols which are valuable synthon in or-
ganic chemistry.
Table 3 One-pot synthesis of trifluoromethylazinyl methanolsa
OH
Me
(a) CuCl2 2H2O, O2, 130 oC, DMF
CF3
Het
1
Het
3
(b) TMSCF3, K2CO3, r.t.
(c) sat. NH4Cl aq.
Entry
Product 3
t/h Yieldb/%
1
2
3
4
5
6
3a, R=H
8
70
53
83
67
76
79
Acknowledgement
3b, R=F 12
3c, R=Cl 11
R
We gratefully acknowledge the National Natural
Science Foundation of China (Nos. 21172031 and
21372040) and the National Natural Science Foundation
of Jilin Province (No. 20140101113JC) for financial
support.
CF3
OH
N
3d, R=Br
7
3e, R=Me 12
3f, R=OMe 15
HO
CF3
References
8
88
3n
[1] (a) Sheldon, R. A.; Kochi, J. K. Metal Catalyzed Oxidations of Or-
ganic Compounds, Academic Press, New York, 1981; (b) Hudlucky,
M. Oxidations in Organic Chemistry, ACS Monograph Series,
American Chemical Society, Washington, DC, 1990; (c) Allen, S. E.;
Walvoord, R. R.; Padilla, S. R.; Kozlowski, M. C. Chem. Rev. 2013,
113, 6234; (d) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012,
45, 851; (e) Liu, C.; Zhang, H,; Shi, W.; Lei, A. Chem. Rev. 2011,
111, 1780; (f) Dick, A. R.; Sanford, M. S. Tetrahedron 2006, 62,
2439.
7
8
N
N
N
7
87
51
CF3
OH
3p
3r
40
9
[2] (a) Gopinath, V. S. Eur. J. Med. Chem. 2013, 69, 527; (b) Ding, D.
Tetrahedron Lett. 2013, 54, 5211; (c) Tagawa, Y. Heterocycles 2003,
60, 953; (d) Achremowicz, L. Synth. Commun. 1996, 26, 1681; (e)
Karthikeyan, I.; Sekar, G. Eur. J. Org. Chem. 2014, 36, 8055; (f)
Gao, X. Org. Lett. 2014, 16, 3664.
a Conditions: 1 (0.3 mmol), CuCl2•2H2O (10 mol%), DMF (3.0
mL), 1 atm O2. Then, TMSCF3 (1.2 mmol), K2CO3 (0.3 mmol).
b Isolated yield.
Scheme 2 Proposed reaction mechanism
[3] For reviews on transition metal catalyzed oxidation reactions that
involve O2 as the oxidant, see: (a) Shi, Z.; Zhang, C.; Tang, C.; Jiao,
N. Chem. Soc. Rev. 2012, 41, 3381; (b) Stahl, S. S. Angew. Chem.,
Int. Ed. 2004, 43, 3400; Angew. Chem. 2004, 116, 3480; (c) Punni-
yamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005, 105, 2329.
[4] For the aerobic oxygenation of methylheteroarenes catalyzed by
copper, see: (a) Houwer, J.; Tehrani, K. A.; Maes, B. U. W. Angew.
Chem., Int. Ed. 2012, 51, 2745; Angew. Chem. 2012, 124, 2799; (b)
Liu, J.; Zhang, X.; Yi, H.; Liu, C.; Liu, R.; Zhang, H.; Zhuo, K.; Lei,
A. Angew. Chem., Int. Ed. 2015, 54, 1261; Angew. Chem. 2015, 127,
1277; (c) Wang, Y.; Zhang, F.; Chiba, S. Synthesis 2012, 44, 1526.
[5] For the aerobic oxygenation of benzylic methylenes catalyzed by
copper, see: (a) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2011, 13,
1622; (b) Mahyari, M.; Laeini, M.; Shaabani, A. Chem. Commun.
2014, 50, 7855.
N
1a
H2O
O2
Cu(II)
N
O2
CF3
H
N
H+
OH
CuOH
3a
Cu
N
O
TMSCF3
I
O
[6] (a) Xie, H.; Liao, Y.-F.; Chen, S.-Q.; Chen, Y.; Deng, G.-J. Org.
Biomol. Chem. 2015, 13, 6944; (b) Huang, Y.; Chen, T.-Q.; Li, Q.;
Zhou, Y.-B.; Yin, S.-F. Org. Biomol. Chem. 2015, 13, 7289.
[7] Selected reviews on Ruppert-Prakash reagent, see: (a) Liu, X.; Xu,
C.; Wang, M.; Liu, Q. Chem. Rev. 2015, 115, 683; (b) Prakash, G. K.
S.; Yudin, A. K. Chem. Rev. 1997, 97, 757; (c) Xu, X.-H.; Matsuza-
ki, K.; Shibata, N. Chem. Rev. 2015, 115, 731; (d) Ni, C.-F.; Hu,
M.-Y.; Hu, J.-B. Chem. Rev. 2015, 115, 765; (e) Yang, X.; Wu, T.;
Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826; (f) Egami, H.;
Sodeoka, M. Angew. Chem., Int. Ed. 2014, 53, 8294; Angew. Chem.
2014, 126, 8434; (g) Chen, P.; Liu, G. Synthesis 2013, 45, 2919.
[8] Xu, C.; Liu, J.-X.; Ming, W.-B.; Liu, Y.-J.; Liu, J.; Wang, M.; Liu,
Q. Chem. Eur. J. 2013, 19, 9104.
H
N
H
O
O
H
2a
N
Cu
II
O
Conclusions
In conclusion, we have developed a direct oxidation
of sp3-hybridized C-H bond by using cheap copper
salts as the catalyst and molecular oxygen as the ulti-
[9] Zheng, G.; Ma, X.-L.; Li, J.-H.; Zhu, D.-S.; Wang, M. J. Org. Chem.
522
© 2016 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2016, 34, 519—523