Chemistry - A European Journal
10.1002/chem.202004761
COMMUNICATION
Acknowledgements
In conclusion, four silylethynylated 5,7- and 5,12-
diazapentacenes (1a,b and 2a,b) were obtained from cis- and
trans-quinacridones. Regioisomerism and steric demand of the
substituents defines stability and decomposition pathways. Cis-
diazapentacenes are more stable with respect to oxidation. While
the smaller TES groups are beneficial for solid-state packing, they
render 2b susceptible to dimerization via Diels-Alder reactions,
although 2b can be handled at concentrations relevant for device
fabrication. To increase stability and lower the frontier orbital
energies i.e. the electron affinities, we currently work on the
synthesis of tri- and tetraaza-derivatives of 1 and 2. A central
pyrazinic ring should increase oxidative stability and suppress
cycloaddition activity. Such targets might be attractive n-type
semiconductors.
We thank the DFG (SFB 1249) for generous support. L. A. thanks
the ‘Studienstiftung des deutschen Volkes’ for a scholarship.
Conflict of Interests
The authors declare no conflict of interests.
Keywords: azaacenes • quinacridines • solid-state packing •
photostability • semiconductors
[
[
1] a) S. S. Labana, L. L. Labana, Chem. Rev. 1967, 67, 1–18. b) A. Eckert, F.
Seidel, J. Prakt. Chem. 1921, 102, 338–360.
2] a) G. Lincke, Dyes Pigment. 2000, 44, 101–122. b) Edwin B. Faulkner (Ed.),
Russell J. Schwartz (Ed.), High performance pigments; Wiley-VCH,
Weinheim, 2009.
Experimental Section
CCDC 2040676 (1a), 2040677 (1b), 2040678 (2a), 2040679 (2b) and
[
3] a) J. E. Anthony, Angew. Chem. Int. Ed. 2008, 47, 452–483. b) K. Takimiya,
S. Shinamura, I. Osaka, E. Miyazaki, Adv. Mater. 2011, 23, 4347–4370.
c) Q. Miao, Synlett 2012, 23, 326–336. d) U. H. F. Bunz, J. U. Engelhart,
B. D. Lindner, M. Schaffroth, Angew. Chem. Int. Ed. 2013, 52, 3810–
2
040679 (9) contain the supplementary crystallographic data for this paper.
These are provided free of charge by The Cambridge Crystallographic
Data Centre.
3
821. d) Q. Miao, Adv. Mater. 2014, 26, 5541–5549. e) K. J. Thorley, J.
Representative procedure towards 5,12-diaza-7,14-(tri-iso-propylethynyl)-
pentacene 1a:
E. Anthony, Isr. J. Chem. 2014, 54, 642–649. f) Y. Li, X. Zhu, Q. Qian,
C. Ma, M. Zhang, Z. Shi, J. Kuai, Y. Zhang, Z. Yan, Q. Zhang, Advanced
Intelligent Systems 2020. g) K. Zhao, F. Yu, W. Liu, Y. Huang, A. A. Said,
Y. Li, Q. Zhang, J. Org. Chem. 2020, 85, 101-107.
In an oven-dried Schlenk tube under argon atmosphere, 2.5 M n-BuLi
[
4] J. E. Anthony, Chem. Rev. 2006, 106, 5028–5048. b) C. Tönshoff, H. F.
Bettinger, Top. Curr. Chem. 2014, 349, 1–30. c) J. Li, Q. Zhang, ACS
Appl. Mater. Interfaces 2015, 7, 28049–28062. d) M. Müller, L. Ahrens,
V. Brosius, J. Freudenberg, U. H. F. Bunz, J. Mater. Chem. 2019, 7,
(
312 µL, 78.0 µmol, 4.0 eq., in n-hexane) was slowly added to a solution
of TIPS-acetylene (263 µL, 1.17 mmol, 6.0 eq.) in anhydrous THF at -
7
1
8 °C. After stirring for 1 h, Boc-protected quinacridone 6 (100 mg,
90 µmol, 1.00 eq.) was added to the solution and the reaction was
14011–14034. e) U. H. F. Bunz, J. Freudenberg, Acc. Chem. Res. 2019,
allowed to stir overnight while allowing the reaction to warm to room
temperature. The reaction was subsequently quenched by addition of
methyl iodide (120 µL, 1.90 mmol, 10.0 eq.) and stirred for 8 h. A small
amount of saturate aqueous ammonium chloride solution was added and
the phases were separated. After concentrating of the organic layer in
vacuo, the crude product was redissolved in DCM, washed with water,
dried over magnesium sulfate and evaporated under reduced pressure. It
is then dissolved in DCM (5 mL) and TFA (500 µL, 7.80 mmol, 40 eq.). is
added to the mixture. After stirring at 0 °C for 30 min an excess of sat.
aqueous sodium bicarbonate solution is added and stirred until the bright
green solution turned dark. The organic layer was separated, dried over
5
2, 1575–1587. f) B. Kohl, F. Rominger, M. Mastalerz, Angew. Chem.
Int. Ed. 2015, 54, 6051-6056.
[
[
5] J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc.
2001, 123, 9482–9483.
6] S. Miao, A. L. Appleton, N. Berger, S. Barlow, S. R. Marder, K. I. Hardcastle,
U. H. F. Bunz, Chem. Eur. J. 2009, 15, 4990–4993.
[7] a) Y. Li,C. Zhang, P. Gu, Z. Wang, Z. Li, H. Li, J. Lu, Q Zhang, Chem. Eur.
J., 2018, 24, 7845-7851 b) A. H. Endres, M. Schaffroth, F. Paulus, H.
Reiss, H. Wadepohl, F. Rominger, R. Kramer, U. H. Bunz, J Am Chem
Soc 2016, 138, 1792-1795. c) L. Ueberricke, D. Holub, J. Kranz, F.
Rominger, M. Elstner, M. Mastalerz, Chemistry 2019, 25, 11121-11134.
8] J. E. Anthony, D. L. Eaton, S. R. Parkin, Org. Lett. 2002, 4, 15-18.
9] a) G. Giri, E. Verploegen, S. C. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S.
Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature
[
[
2 4
Na SO and evaporated under reduced pressure. As an eluent for
purification via column chromatography a mixture of petrol ether and ethyl
acetate (97:3) was chosen. The product was obtained as a dark solid and
was recrystallized by overlaying a saturated dichloromethane solution with
methanol to yield black crystalline needles with a metallic lustre (48.5 mg,
2011, 480, 504-508. b) X. Xu, Y. Yao, B. Shan, X. Gu, D. Liu, J. Liu, J.
Xu, N. Zhao, W. Hu, Q. Miao, Adv. Mater. 2016, 28, 5276–5283. c) M.
Chu, J.-X. Fan, S. Yang, D. Liu, C. F. Ng, H. Dong, A.-M. Ren, Q. Miao,
Adv. Mater. 2018, 30, e1803467.
7
8
(
2.1 µmol, 36% overall yield). NMR (400 MHz, CDCl
.52 (d, J = 8.8 Hz, 2H), 8.21 (d, J = 8.9 Hz, 2H), 7.75 (m, 2H), 7.59 – 7.44
) δ
3
) δ = 9.67 (s, 2H),
[
[
10] W. Fudickar, T. Linker, J. Am. Chem. Soc. 2012, 134, 15071–15082.
11] J. U. Engelhart, O. Tverskoy, U. H. Bunz, J. Am. Chem. Soc. 2014, 136,
15166-15169.
[12] a) Z. He, R. Mao, D. Liu, Q. Miao, Org. Lett. 2012, 14, 4190–4193. b) P.
E. Hofmann, M. W. Tripp, D. Bischof, Y. Grell, A. L. C. Schiller, T.
Breuer, S. I. Ivlev, G. Witte, U. Koert, Angew. Chem. Int. Ed. 2020,
59, 16501-16505. c) R. C. Garcia, M. J. Pech, R. Sommer, C. B.
Gorman, J. Org. Chem. 2019, 84, 15079-15086.
m, 2H), 1.47 – 1.36 (m, 6H) 1.34 (m, 36H). 13C NMR (101 MHz, CDCl
3
=
1
1
151.3, 144.7, 131.1, 130.8, 128.4, 128.2, 127.9, 127.8, 127.2, 127.1,
11.6, 101.5, 77.4, 19.1, 11.7. IR (neat) ṽ = 2943, 2859, 1526, 1456, 1429,
-
1
396, 1060, 990, 879, 755, 662, 607, 455, 436 cm . HRMS (ESI+): m/z
+
calcd for C42
H N
52 2
Si
2
: 640.3669; found 641.3750 (M+H ). M.p.: 220-230°C
(dec.).
[
13] A. V. Lunchev, S. A. Morris, R. Ganguly, A. C. Grimsdale, Chem. Eur. J.
019, 25, 1819-1823.
2
[
[
[
[
14] Q. Ye, C. Chi, Chem. Mater. 2014, 26, 4046–4056.
15] S. S. Labana, L. L. Labana, Chem. Rev. 1967, 67, 1-18.
16] D. Sparfel, F. Gobert, J. Rigaudy, Tetrahedron 1980, 36, 2225-2235.
17] P. Biegger, S. Stolz, S. N. Intorp, Y. Zhang, J. U. Engelhart, F. Rominger,
K. I. Hardcastle, U. Lemmer, X. Qian, M. Hamburger, U. H. Bunz, J. Org.
Chem. 2015, 80, 582-589.
[
18] C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale, G. C. Bazan, Adv. Mater.
2011, 23, 2367–2371.
This article is protected by copyright. All rights reserved.