These then undergo oxidation by Cu(OAc)2 to regener-
ate palladium(II) to initiate a new catalytic cycle.
and acrylic acids to form 3,4-dihydroisocoumarin and
5,6-dihydrocoumalins in moderate to excellent yields.
The synthetic potential of this protocol was demon-
strated via several easy derivatizations of the products
and was further showcased in the short synthesis of nat-
ural product Clausamine B.
This series of 6-allyl-5,6-dihydro-2H-pyran-2-ones are
synthetically versatile building blocks due to the pres-
ence of several different functional groups for further
elaborations (Scheme 2). For example, reduction of the
ketone in 2a produced the corresponding hemiacetal 4a
in 80% yield as a single diastereomer. Treatment of 4a
with BF3-Et2O followed by Zn(Me)2 provided tetrasub-
stituted dihydropyran 5a.[15] An SN2’ addition of organo
copper(I) reagent with 3a, 3u at the terminal carbon of
the double bond resulting in the ring opening and formal
1,4 difunctionalization of the original 1,3-butadiene.[16]
Acknowledgement
We are grateful to NSFC-21772218, 21421091,
XDB20000000, the “Thousand Plan” Youth program,
State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, and the Chi-
nese Academy of Sciences.
References
[1] (a) Sondheimer, E. J. Am. Chem. Soc. 1957, 79, 5036; (b) Hama-
da,Y.; Hara,O.; Kawai, A.; Kohno, Y.; Shioiri, T. Tetrahedron. 1991,
47, 8635; (c) Medrano, A. P.; Grieco, P. A. J. Am. Chem. Soc. 1991,
113, 1057; (d) Ward, R. A.; Procter, G. Tetrahedron. 1995, 51, 12301;
(e) Chihiro, I.; Shinya, K.; Masataka, I.; Nijsiri, R.; Teruo, M.; Ma-
sato, O.; Yutaka, K.; Harukuni, T.; Hoyoku, N.; Hiroshi, F. J. Nat.
Prod. 2000, 63, 125; (f) Zidorn, C.; Lohwasser, U.; Pschorr, S.; Sal-
venmoser, D.; Ongania, K. H.; Ellmerer, E. P.; Börner, A.; Stuppner,
H. Phytochemistry. 2005, 66, 1691; (g) Pu, J.-X.; Li, R.-T.; Xiao,
W.-L.; Gong, N.-B.; Huang, S.-X.; Lu, Y.; Zheng, Q.-T.; Lou, L.-G.;
Sun, H.-D. Tetrahedron, 2006, 62, 6073; (h) Badaruddin, A. H.;
Muhamma, A.; Hasan, R. N.; Aslam, M. M.; Shahid, M. Chin. J.
Chem., 2007, 25, 102; (i) Zhang, L.-H.; Li, S.-G.; Wu, H.-H.; Chen,
G.; Li, L.; Bai, J.; Hua, H.-M.; Wang, H.-F.; Pei, Y.-H. Phytochemis-
try. Letters. 2017, 20, 200; (j) Gaikwad, R. D.; Rane, M. D.; Bhat, S.
V. Tetrahedron: Asymmetry. 2017, 28, 181.
[2] (a) Larock, R. C.; Varaprath, S.; Lau, H. H.; Fellows, C. A. J. Am.
Chem. Soc. 1984, 106, 5274; (b) Bestmann, H. J.; Kern, F.; Schafer,
D.; Witschel, M. C. Angrw. Chem. Int. Ed. 1992, 31, 795; (c) Lebold,
T. P.; Kerr, M. A. Org. Lett. 2008, 10, 997; (d) Chen, J.; Zhou, L.;
Tan, C. K.; Yeung, Y.-Y.; J. Org. Chem. 2012, 77, 999; (e) Turytsya,
V. V.; Ostapiuk, Y. V.; Matiychuk, V. V.; Obushak, M. D. J. Hetero-
cyclic Chem. 2014, 58, 1898.
Scheme 2 Synthetic utilities of lactone products.
The total synthesis of Clausamine B was pursued to
further demonstrate the potential of this methodology.
Following a slightly modified known procedure, 6c was
prepared in three steps. [17] Hydrolysis of 6c lead to the
key intermediate 6d that was applied to the standard
conditions with isoprene.[18] The desired 4+2 cycloaddi-
tion occurred exclusively at the less hindered C-H site
to afford Clausamine B. This synthesis featured not only
[2c]
significantly shortened steps
but also served as an
excellent starting point for accessing other natural
products in this family.
[3] (a) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009,
48, 6097; (b) Wang, D.-H.; Engle, K. M.; Shi, B.-F.; Yu, J.-Q.; Sci-
ence. 2010, 327, 315; (c) Satoh, T.; Miura, M. Synthesis. 2010, 20,
3395; (d) Li, H.; Shi, Z.-J.; Progress in chemistry. 2010, 22, 1414; (e)
Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev.
2017, 117, 8908; (f) He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu,
J.-Q. Chem. Rev. 2017, 117, 8754.
[4] (a) Miura, M.; Tsuda, T.; Satoh, T.; Art, S. P.; Nomura, M. J. Org.
Chem. 1998, 63, 5211; (b) Ueura, K.; Satoh, T.; Miura, M. Org. Lett.
2007, 9, 1407; (c) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem.
2007, 72, 5362; (d) Satoh, T.; Ueura, K.; Miura, M. Pure Appl.
Chem. 2008, 80, 1127; (e) Shimizu, M.; Hirano, K.; Satoh, T.; Miura,
M. J. Org. Chem. 2009, 74, 3478; (f) Mochida, S.; Hirano, K.; Satoh,
T.; Miura, M. J. Org. Chem. 2009, 74, 6295.
[5] (a) Ackermann, L.; Pospech, J. Org. Lett. 2011, 13, 4153; (b) Bech-
toldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.;
Ackermann, L. Angew. Chem. Int. Ed. 2016, 55, 264; (c) Bechtoldt,
A.; Baumert, M.; Vaccaro, L.; Ackermann, L. Green Chem. 2018, 20,
398; (d) Qiu, Y.-A.; Kong, W.-J.; Struwe, J.; Sauermann, N.; Rogge,
T.; Scheremetjew, A.; Ackermann, L.; Angew. Chem. Int. Ed. 2018,
57, DOI: 10.1002/anie.201803342.
Scheme 3 Total synthesis of Clausamine B
[6] Nandi, D.; Ghosh, D.; Chen, S.-J.; Kuo, B.-C.; Wang, N.-M.; Lee,
H.-M. J. Org. Chem. 2013, 78, 3445.
[7] Liu, Y.; Yang, Y.-D.; Shi, Y.; Wang, X.-J.; Zhang, L.-Q.; Cheng,
Y.-Y.; You, J.-S. Organometallics. 2016, 35, 1350.
Conclusions
In conclusion, we developed a palladium(II)-catalyzed
cycloaddition reaction of 1,3-dienes with both benzoic
[8] Jiang, Q.-D.; Zhu, C.-L.; Zhao, H.-Q.; Su, W.-P. Chem. Asian J.
2016, 11, 356.
This article is protected by copyright. All rights reserved.