2812
J . Org. Chem. 1998, 63, 2812-2813
Ta ble 1. Selectivity of th e F or m a tion of 1,2-Diola
High ly Dia ster eoselective P in a col Cou p lin g
of Secon d a r y Alip h a tic Ald eh yd es In d u ced by
a Ca ta lytic System Con sistin g of Va n a d iu m
Com p lex, Ch lor osila n e, a n d Zin c Meta l
Toshikazu Hirao,* Motoki Asahara,
Yasuaki Muguruma, and Akiya Ogawa
yield, % (dl/meso)
entry
cat.
solvent
2a
3a
Department of Applied Chemistry, Faculty of Engineering,
Osaka University, Yamada-oka, Suita, Osaka 565-0871, J apan
1
2
3
4
CpV(CO)4
CpV(CO)4
Cp2VCl2
Cp2VCl2
CpV(CO)4
Cp2VCl2
Cp2VCl2
Cp2VCl2
DME
THF
DME
THF
THF
THF
THF
THF
0
80 (63/37)
78 (91/9)
0
0
82 (88/12)
Received March 2, 1998
100 (88/12)
100 (92/8)
100 (96/4)
74 (70/30)
0
0
0
0
0
5b
6b
7c
8d
The reductive dimerization of carbonyl compounds, espe-
cially aldehydes and ketones, to give diols is an important
method for constructing vicinally functionalized carbon-
carbon bonds.1 For this purpose, low-valent metals such as
aluminum amalgam,2 titanium,3 vanadium,4 zinc,5 and
samarium6 have been employed conveniently. For example,
pinacol coupling reactions using TiCl3/Zn-Cu and [V2Cl3-
(THF)6]2[Zn2Cl6] are employed successfully for the synthesis
of paclitaxel7 and C2-symmetrical HIV protease inhibitors,8
respectively. To synthesize such complicated compounds,
the efficient control of the stereochemistry in the coupling
reactions is of great importance.3f,h,j,4 In addition, another
significant part of the pinacol coupling reaction includes the
construction of a catalytic system of low-valent metals. It
has recently been revealed that the use of chlorosilanes in
combination with catalytic amounts of a transition-metal
salt such as titanium and vanadium and a stoichiometric
reducing agent successfully effects the catalytic pinacol
coupling reactions.9,10 Among these catalytic reactions, the
low-valent titanium-catalyzed pinacol coupling of aromatic
aldehydes exhibits the excellent diastereoselectivity.10c-e
However, there are no examples of the highly diastereose-
lective pinacol coupling of simple aliphatic aldehydes in
39 (89/11)
a
Reaction conditions unless otherwise stated: aldehyde (2
mmol), catalyst (0.06 mmol), Zn (4 mmol), Me3SiCl (4 mmol),
solvent (7 mL), 20 °C, 13 h. PhMe2SiCl was used instead of
b
Me3SiCl. c 40 °C. -20 °C.
d
catalytic systems.11,12 Herein, we report a highly diastereo-
selective catalytic pinacol coupling of secondary aliphatic
aldehydes with the aid of Cp2VCl2/R3SiCl/Zn (eq 1).
A versatile catalytic system consisting of vanadium,
chlorosilane, and zinc worked well for the reductive coupling
of aliphatic aldehydes in dimethoxyethane (DME) to give
1,3-dioxolanes, but unfortunately, the diastereoselectivity of
the dioxolanes obtained was generally very low. For ex-
ample, 2-ethylbutanal (1a ) reacted with cat. CpV(CO)4, Me3-
SiCl, and zinc powder in DME at room temperature,
affording 1,3-dioxolane (3a ) in 80% yield with low selectivity
(dl/meso ) 63/37, see entry 1 in Table 1).9b,c By switching
the solvent simply from DME to THF, however, the product
selectivity dramatically changed, providing 1,2-diol (2a )
predominantly without formation of any olefinic products
and 1,3-dioxolane (entry 2). Similar dependence of the
product selectivity on the solvent was also observed with
Cp2VCl2 catalyst (entries 3-4). More interestingly, both
reactions of secondary aldehyde (1a ) in THF using cat. Cp2-
VCl2 and cat. CpV(CO)4 exhibited the excellent diastereo-
selectivity (entries 2 and 4). In the case of cat. Cp2VCl2,
the diastereoselectivity could be further enhanced by using
PhMe2SiCl in place of Me3SiCl (entry 6). The result suggests
that the bulkiness of the substituents on chlorosilanes
somewhat contributes to the diastereoselection. Elevated
temperature led to a significant decrease in both yield and
stereoselectivity of 2a (entry 7). At a lower temperature
(-20 °C), the product selectivity changed, giving 1,3-diox-
olane (3b) even in THF (entry 8).
(1) (a) Grame, M. R. In Comprehensive Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, p 563. (b) Wirth,
T. Angew. Chem., Int. Ed. Engl. 1996, 35, 61.
(2) Schreibmann, A. A. Tetrahedron Lett. 1970, 49, 4271.
(3) (a) Mukaiyama, T.; Sato, T.; Hanna, J . Chem. Lett. 1973, 1041. (b)
Tyrlik, S.; Wolochowicz, I. Bull. Chim. Soc. Fr. 1973, 2147. (c) McMurry, J .
E.; Fleming, M. P. J . Am. Chem. Soc. 1974, 96, 4708. (d) Corey, E. J .;
Danheiser, R. L.; Chandrasekaran, S. J . Org. Chem. 1976, 41, 260. (e)
Suzuki, H.; Manabe, H.; Enokiya, R.; Hanazaki, Y. Chem. Lett. 1986, 1339.
(f) Handa, Y.; Inanaga, J . Tetrahedron Lett. 1987, 28, 5717. (g) McMurry,
J . E. Chem. Rev. 1989, 89, 1513. (h) Barden, M. C.; Schwartz, J . J . Am.
Chem. Soc. 1996, 118, 5484. (i) Balu, N.; Nayak, S. K.; Banerji, A. J . Am.
Chem. Soc. 1996, 118, 5932. (j) Clerici, A.; Clerici, L.; Porta, O. Tetrahedron
Lett. 1996, 37, 3035.
(4) (a) Freudenberger, J . H.; Konradi, A. W.; Pedersen, S. F. J . Am. Chem.
Soc. 1989, 111, 8014. (b) Park, J .; Pedersen, S. F. J . Org. Chem. 1990, 55,
5924. (c) Konradi, A. W.; Pedersen, S. F. J . Org. Chem. 1992, 57, 28. (d)
Konradi, A. W.; Kemp, S. J .; Pedersen, S. F. J . Am. Chem. Soc. 1994, 116,
1316.
(5) (a) Motherwell, W. B. J . Chem. Soc., Chem. Commun. 1973, 935. (b)
So, J .-H.; Park, M.-K.; Boudjouk, P. J . Org. Chem. 1988, 53, 5871. (c)
Tanaka, K.; Kishigami, S.; Toda, F. J . Org. Chem. 1990, 55, 2981. (d)
Tsukinoki, T.; Kawaji, T.; Hashimoto, I.; Mataka, S.; Tashiro, M. Chem.
Lett. 1997, 235.
(6) (a) Namy, J . L.; Kagan, H. B. Tetrahedron Lett. 1983, 24, 765. (b)
Molander, G. A. Chem. Rev. 1992, 92, 29. (c) Taniguchi, N.; Kaneta, N.;
Uemura, M. J . Org. Chem. 1996, 61, 6088.
(7) (a) Nicolaou, K. C.; Liu, J .-J .; Yang, Z.; Ueno, H.; Guy, R. K.; Sorensen,
E. J .; Claiborne, C. F.; Hwang, C.-K.; Nakada, M.; Nantermet, P. G. J . Am.
Chem. Soc. 1995, 117, 634. (b) Shiina, I.; Nishimura, T.; Ohkawa, N.; Sakoh,
H.; Nishimura, K.; Saitoh, K.; Mukaiyama, T. Chem. Lett. 1997, 419.
(8) (a) Kammermeier, B.; Beck, G.; Holla, W.; J acobi, D.; Napierski, B.;
J endralla, H. Chem. Eur. J . 1996, 2, 307. (b) Kammermeier, B.; Beck, G.;
J acobi, D.; J endralla, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 685.
(9) Fu¨rstner’s group and our group have independently demonstrated
the catalytic McMurry coupling reaction and pinacol coupling reaction,
respectively; see: (a) Fu¨rstner, A.; Hupperts, A. J . Am. Chem. Soc. 1995,
117, 4468. (b) Hirao, T.; Hasegawa, T.; Muguruma, Y.; Ikeda, I. J . Org.
Chem. 1996, 61, 366. (c) Hirao, T.; Hasegawa, T.; Muguruma, Y.; Ikeda, I.
Abstracts for the 6th International Kyoto Conference on New Aspects of
Organic Chemistry, 1994; p 175.
(10) For quite recent advances in the catalytic pinacol coupling, see: (a)
Nomura, R.; Matsuno, T.; Endo, T. J . Am. Chem. Soc. 1996, 118, 11666. (b)
Maury, O. Villiers, C. Ephritikhine, M. New J . Chem. 1997, 21, 137. (c)
Gansa¨uer, A. J . Chem. Soc., Chem. Commun. 1997, 457. (d) Gansa¨uer, A.
Synlett 1997, 363. (e) Lipski, T. A.; Hilfiker, M. A.; Nelson, S. G. J . Org.
Chem. 1997, 62, 4566.
(11) For the diastereoselective pinacol coupling of aliphatic aldehydes
by using a stoichiometric Nb(III), see: Szymoniak, J .; Besanc¸on, J .; Mo¨ıse,
C. Tetrahedron 1994, 50, 2841.
(12) Pedersen and co-workers reported a series of highly diastereoselec-
tive stoichiometric pinacol coupling of aliphatic aldehydes bearing chelating
groups.4
S0022-3263(98)00376-4 CCC: $15.00 © 1998 American Chemical Society
Published on Web 04/16/1998