Journal of Materials Chemistry A
ARTICLE
DOI: 10. 39/C5TA00197H
Journal of Mater10ials Chemistry A
microgels will provide Au nanoparticles with specific binding
abilities to certain compounds leading to enhanced catalytic
activity.
1
M. A. C. Stuart, W. T. S. Huck, J.Genzer, M. Müller, C. Ober, M.
Stamm, G. B. Sukhorukov, I. Szleifer, V. V.Tsukruk, M. Urban, F.
Winnik, S.Zauscher, I.Luzinov, S.Minko, Nat. Mater.,2010,
J. Gensel, I. Dewald, J. Erath, E. Betthausen, A. H. E. Müller, A.
Fery,Chem. Sci., 2013 , , 325.
J. Zhang, M. Zhang, K. Tang, F. Verpoort, T. Sun, small, 2014, 10
2.
B.P. Tripathi, N.C. Dubey, F. Simon, M. Stamm, RSC Adv., 2014, 4
4073.
9, 101.
2
3
4
5
6
7
Conclusions
4
,
,
Au nanoparticles have been synthesized inꢀsitu within the αꢀCD
modified PVCL microgels without adding any reducing agents
and surfactants. The size and loading degree of the Au
3
3
nanoparticles can be controlled by the HAuCl amount. The
4
Z. Wang, B. Tan, I. Hussain, N. Schaeffer, M. F. Wyatt, M.Brust, A.
I. Cooper, Langmuir, 2007 , 23 , 885.
presence of αꢀCD in the microgels allows homogeneous
distribution of Au nanoparticles in colloidal polymer networks.
In addition, the immobilization of Au nanoparticles doesn’t
influence the swellingꢀdeswelling properties of the PVCLꢀαꢀ
CD microgels. Similar VPTT behavior of the PVCL networks
has been observed for the PVCLꢀαꢀCDꢀAu hybrid particles.
After deposition of Auꢀnanoparticles inside the microgels, the
hybrid particles still preserve good colloidal stability. The
PVCLꢀαꢀCDꢀAu composite particles can work efficiently as
catalyst for the reduction of aromatic nitroꢀcompounds. Most
importantly, due to the ability of αꢀCDs to form complexes with
specific compounds, the synthesized hybrid microgels show
different catalytic activity for the target compounds during the
catalytic reactions. A significant enhancement in the catalytic
activity has been observed for the reduction of Nip, while no
obvious effect has been found for the reduction of DMNip.
Considering the selective binding/complexation properties of
CDs with a variety of different guest molecules together with
the reducing and stabilizing properties of the PVCLꢀαꢀCD
microgels, the novel hybrid microgels developed in the present
study could create new opportunities for functional
nanomaterials with possible applications in catalysis.
D. Palioura, S. P.Armes, S. H. Anastasiadis, M. Vamvakaki,
Langmuir, 2007 , 23 , 5761.
S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X. Guo, M. Ballauff, Y.
Lu, Angew. Chem. Int. Ed., 2012, 51, 2229.
8
9
Y. Zhu, L. Fan, B. Yang, J.Z. Du, ACS Nano, 2014, 8, 5022.
M. Antonietti, F. Grohn, J. Hartmann, L. Bronstein, Angew. Chem.,
Int. Edit. Engl.1997, 36, 2080.
1
1
1
1
0 S. Xu, J. Zhang, C. Paquet, Y. Lin, E. Kumacheva, Adv. Funct.
Mater., 2003, 13, 468.
1 H.B. Zhu, Y.X. Li, R.Q. Qiu, L. Shi, W.T. Wu, S.Q. Zhou,
Biomaterials, 2012, 33, 3058.
2 M. Horecha, E. Kaul, A. Horechyy, M. Stamm, J. Mater. Chem. A
014, , 7431.
,
2
2
3 L. A. Lyon, Z. Meng, N. Singh, C. D. Sorrell, A. S. John, Chem. Soc.
Rev, 2009, 38, 865.
1
1
1
1
4 J. Ramos, A. Imaz, J. Forcada, Polym. Chem., 2012,
5 K.C. Clarke, L.A. Lyon, Langmuir, 2013, 29, 12852.
6 S. Nayak, D. Gan, M. J. Serpe, L. A. Lyon, Small, 2005,
3
, 852.
1
, 416.
7 R. ContrerasꢀCáceres, S. AbaldeꢀCela, P. GuardiaꢀGirós, A.
FernándezꢀBarbero, J. PérezꢀJuste, R. A. AlvarezꢀPuebla, L. M. Lizꢀ
Marzán, Langmuir, 2011, 27, 4520.
1
1
2
2
8 J. PérezꢀJuste, I. PastorizaꢀSantos, L. M. LizꢀMarzán, J. Mater.
Chem. A, 2013,
9 M. Das, L. Mordoukhovski, E. Kumacheva, Adv. Mater. 2008, 20
371.
0 D. Suzuki, Y. Nagase, T. Kureha, T. Sato, J. Phys. Chem. B., 2014,
18, 2194.
1, 20.
Acknowledgements
,
He Jia gratefully acknowledges financial support of CSC
scholarship. DS and AP thank VolkswagenStiftung and
Deutsche Forschungsgemeinschaft (DFG SFB 985 “Functional
Microgels and Microgel Systems) for financial support.
2
1
1 Y. Lu, Y. Mei, M. Drechsler, M. Ballauff, Angew. Chem. Int.
Ed.,2006 , 45 , 813.
Notes and references
Soft Matter and Functionmal Materials, HelmholtzꢀZentrum Berlin für
22 Y. Lu, S. Proch, M. Schrinner, M. Drechsler, R. Kempe, M. Ballauff.
J. Mater. Chem., 2009, 19 , 3955.
a
Materialien und Energie. HahnꢀMeitnerꢀPlatz 1, 14109 Berlin, Germany
23 A. Pich, J. Hain, Y. Lu, V. Boyko, Y. Prots, H. Adler,
Macromolecules, 2005, 38, 6610.
b
Functional and Interactive Polymers Institute of Textile and
Macromolecular Chemistry, RWTH Aachen University, DWI Leibniz 24 M. Aslam, L. Fu, M. Su, K. Vijayamohanan, V. P. Dravid, J. Mater.
Institute for Interactive Materials. Forckenbeckstr. 50, Dꢀ52056 Aachen,
Germany
Chem., 2004, 14, 1795.
25 M. R. Nabid, Y. Bide, M. Niknezhad, Chemcatchem, 2014, 6, 538.
†
Electronic Supplementary Information (ESI) available: [The amount 26 K. Kim, K. L. Kim, S. J. Lee, Chem. Phys. Lett. 2005, 403,77.
of αꢀCD and the size changing of the microgels were measured by FTIR 27 B. D. Busbee, S. O. Obare, C. J. Murphy, Adv. Mater., 2003, 15, 414.
and DLS; The color changing and the stability of the microgels loaded 28 S. Mössmer, J. P. Spatz, T. Aberle, J. Schmidt, W. Burchard, M.
with and without Au were measured by UVꢀvis and LUMiSizer; The
complexation between Nip and microgels, the catalytic process of 29 T. K. Sau, A. Pal, N. R. Jana, Z. L. Wang, T. Pal, J. Nanopart. Res.,
DMNip were measured by UVꢀvis; The size and complexation with Nip
2001, , 257.
of CTABꢀAu were measured by TEM and UVꢀvis.]. See 30 C. E. Hoppe, M. Lazzari, I. PardiñasꢀBlanco, M. A. LópezꢀQuintela,
DOI: 10.1039/b000000x/
Langmuir, 2006, 22, 7027.
Möller, Macromolecules, 2000, 33, 4791.
3
8
| J. Mater. Chem. A, 2015, 00, 1-3
This journal is © The Royal Society of Chemistry 2012