A. Yu. Fedoro6 et al. / Tetrahedron Letters 42 (2001) 5875–5877
5877
a
Table 2. Arylation–cyclization with aryllead reagent 7
Substrate
8
10
12
14
16
18
Conditions
Products
rt, 10 hb
9
50°C, 10 hb
11
50°C, 6 hb
13
50°C, 10 hc
15
50°C, 10 hc
17
50°C, 6 hc
19
Yield (%)
55
42
33
26
6
21
a
3
The reactions were performed with in situ generated 7 (1.4 equiv.), pyridine or DMAP (3 equiv.), Et N (3 equiv.) in CHCl (5 cm /mmol of
3
3
substrate).
b
c
DMAP (4-dimethylaminopyridine) was used as the coordinating base.
Pyridine was used as the coordinating base.
Phytochemistry 1998, 48, 181–182; 183–184; 185–186; (f)
Zhang, G.-l.; Ruecher, G.; Breitmaier, E.; Mayer, R.;
Steinbeck, C. Planta Med. 1998, 64, 165–171.
2
. Zhi, L.; Tegley, C. M.; Edwards, J. P.; West, S. J.;
Marschke, K. B.; Gottardis, M. M.; Mais, D. E.; Jones,
T. K. Bioorg. Med. Chem. Lett. 1998, 8, 3365–3370.
. Nakazato, A.; Sekiguchi, Y.; Ohta, K.; Chaki, S.;
Okuyama, S. Bioorg. Med. Chem. 1999, 7, 2027–2035.
. Devlin, J. P. Can. J. Chem. 1975, 53, 343–349.
3
4
Scheme 3.
When the same system (phenol, aryllead triacetate and
two bases) was applied to the chloromethylphenyllead
reagent 7, slightly lower yields were obtained in all
cases and the reactions were more sluggish, requiring
longer reaction times and/or higher temperatures
5. (a) Wan, P.; Huang, C.-G. J. Chem. Soc., Chem. Com-
mun. 1988, 1193–1195; (b) Shi, Y.; Wan, P. Chem. Com-
mun. 1997, 273–274.
6. Ames, D. E.; Opalko, A. Tetrahedron 1984, 40, 1919–
1925.
7. (a) Hennings, D. D.; Iwasa, S.; Rawal, V. H. J. Org.
Chem. 1997, 62, 2–3; (b) Grigg, R.; Savic, V.; Tambyra-
jah, V. Tetrahedron Lett. 2000, 41, 3003–3006.
8. (a) Rosa, A. M.; Lobo, A. M.; Branco, P. S.; Prabhakar,
S. Tetrahedron 1997, 53, 285–298; (b) Bowman, W. R.;
Mann, E.; Parr, J. J. Chem. Soc., Perkin Trans. 1 2000,
2991–2999; (c) Harrowven, D. C.; Nunn, M. I. T.; New-
man, N. A.; Fenwick, D. R. Tetrahedron Lett. 2001, 42,
961–964.
(
50°C) (Table 2).
In conclusion, functional group interconversion of a
dicationic equivalent (A) possessing a more reactive
benzylic centre can be transformed, via a zwitterion (B),
into a second dicationic equivalent (C) in which the
aromatic electrophilic centre is more reactive towards
nucleophilic reagents than the benzylic centre (Scheme
3). Indeed, 2-halomethylphenylboronic acids can be
easily transmetallated with lead tetraacetate to afford
the 2-halomethylphenyllead triacetates 4 or 7, in which
the presence of the halogen atom in the coordinating
sphere of the lead atom does not significantly alter the
usual reactivity of aryllead triacetates towards soft
nucleophiles.
9. (a) Pinhey, J. T. In Comprehensive Organometallic Chem-
istry II; Abel, E. W.; Stone, F. G. A.; Wilkinson, G.,
Eds. Lead; Pergamon Press: Oxford, 1995; Vol. 11, pp.
461–485; (b) Finet, J.-P. Ligand Coupling Reactions with
Heteroatomic Compounds; Pergamon Press: Oxford,
1998; Chapter 7, pp. 205–247.
1
0. Donnelly, D. M. X.; Finet, J.-P.; Guiry, P. J.; Nesbitt, K.
Tetrahedron 2001, 41, 3003–3006 and previous references.
References
11. Delacroix, T.; B e´ rillon, L.; Cahiez, G.; Knochel, P. J.
Org. Chem. 2000, 65, 8108–8110.
1
. (a) Veeraju, P.; Rao, N. S. P.; Rao, L. J.; Rao, K. V. J.;
Rao, P. R. Phytochemistry 1989, 28, 950–951; (b)
Majumder, P. L.; Banerjee, S.; Maiti, D. C.; Sen, S.
Phytochemistry 1995, 39, 649–653; (c) Majumder, P. L.;
Banerjee, S.; Sen, S. Phytochemistry 1996, 42, 847–852;
12. Takeuchi, M.; Mizuno, T.; Shinmori, H.; Nakashima,
M.; Shinkai, S. Tetrahedron 1996, 52, 1195–1204.
13. Morgan, J.; Pinhey, J. T. J. Chem. Soc., Perkin Trans. 1
1990, 715–720.
14. Buston, J. E. H.; Compton, R. G.; Leech, M. A.;
Moloney, M. G. J. Organomet. Chem. 1999, 585, 326–
330.
(
d) Majumder, P. L.; Guha, S.; Sen, S. Phytochemistry
1
999, 52, 1365–1369; (e) Anuradha, V.; Rao, N. S. P.
.