Chemistry of Materials
Page 8 of 10
(
12) Wang, A.; Yan, X.; Zhang, M.; Sun, S.; Yang, M.; Shen, W.;
through Cation Exchange. J. Am. Chem. Soc. 2017, 139, 4087–
4097.
(28) Zhang, D.; Yu, Y.; Bekenstein, Y.; Wong, A. B.; Alivisatos,
A. P.; Yang, P. Ultrathin Colloidal Cesium Lead Halide Perov-
skite Nanowires. J. Am. Chem. Soc. 2016, 138, 13155–13158.
(29) Zhang, Y.; Yin, J.; Parida, M. R.; Ahmed, G. H.; Pan, J.;
Bakr, O. M.; Brédas, J.-L.; Mohammed, O. F. Direct-Indirect Na-
ture of the Bandgap in Lead-Free Perovskite Nanocrystals. J.
Phys. Chem. Lett. 2017, 8, 3173–3177.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Pan, X.; Wang, P.; Deng, Z. Controlled Synthesis of Lead-Free
and Stable Perovskite Derivative Cs
ile Hot-Injection Process. Chem. Mater. 2016, 28, 8132–8140.
13) Saparov, B.; Hong, F.; Sun, J.-P.; Duan, H.-S.; Meng, W.;
Cameron, S.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Thin-Film Prepara-
tion and Characterization of Cs Sb : A Lead-Free Layered Per-
2 6
SnI Nanocrystals via a Fac-
(
3
2 9
I
ovskite Semiconductor. Chem. Mater. 2015, 27, 5622–5632.
(14) Zuo, C.; Ding, L. Lead-Free Perovskite Materials
(NH
4
)
3
Sb
2
I
x
Br9−x. Angew. Chem. Int. Ed. 2017, 56, 6528–6532.
(30) Pal, J.; Manna, S.; Mondal, A.; Das, S.; Adarsh, K. V.; Nag,
A. Colloidal Synthesis and Photophysics of M Sb I (M=Cs and
3 2 9
Rb) Nanocrystals: Lead-Free Perovskites. Angew. Chem. Int. Ed.
2017, 56, 14187–14191.
(31) Hebig, J.-C.; Kühn, I.; Flohre, J.; Kirchartz, T. Optoelec-
tronic Properties of (CH NH ) Sb I Thin Films for Photovoltaic
3 3 3 2 9
Applications. ACS Energy Lett. 2016, 1, 309–314.
(32) Zhang, J.; Yang, Y.; Deng, H.; Farooq, U.; Yang, X.; Khan,
J.; Tang, J.; Song, H. High Quantum Yield Blue Emission from
Lead-Free Inorganic Antimony Halide Perovskite Colloidal
Quantum Dots. ACS Nano 2017, 11, 9294–9302.
(33) Goldschmidt, V. M. Die Gesetze der Krystallochemie.
Naturwissenschaften 1926, 14, 477–485.
(34) Kim, H.-S.; Im, S. H.; Park, N.-G. Organolead Halide Per-
ovskite: New Horizons in Solar Cell Research. J. Phys. Chem. C
2014, 118, 5615–5625.
(35) Hoefler, S. F.; Trimmel, G.; Rath, T. Progress on Lead-Free
Metal Halide Perovskites for Photovoltaic Applications: A Re-
view. Monatshefte Für Chem. - Chem. Mon. 2017, 148, 795–826.
(36) Kihara, K.; Sudo, T. The Structure of α-Type Cesium An-
(
15) Zhang, D.; Eaton, S. W.; Yu, Y.; Dou, L.; Yang, P. Solution-
Phase Synthesis of Cesium Lead Halide Perovskite Nanowires. J.
Am. Chem. Soc. 2015, 137, 9230–9233.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(
16) Horváth, E.; Spina, M.; Szekrényes, Z.; Kamarás, K.; Gaal,
R.; Gachet, D.; Forró, L. Nanowires of Methylammonium Lead
Iodide (CH NH PbI ) Prepared by Low Temperature Solution-
Mediated Crystallization. Nano Lett. 2014, 14, 6761–6766.
17) Im, J.-H.; Luo, J.; Franckevičius, M.; Pellet, N.; Gao, P.;
3
3
3
(
Moehl, T.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M.;
Park, N.-G. Nanowire Perovskite Solar Cell. Nano Lett. 2015, 15,
2
120–2126.
(18) Xing, J.; Liu, X. F.; Zhang, Q.; Ha, S. T.; Yuan, Y. W.; Shen,
C.; Sum, T. C.; Xiong, Q. Vapor Phase Synthesis of Organometal
Halide Perovskite Nanowires for Tunable Room-Temperature
Nanolasers. Nano Lett. 2015, 15, 4571–4577.
(
19) Zhu, P.; Gu, S.; Shen, X.; Xu, N.; Tan, Y.; Zhuang, S.; Deng,
Y.; Lu, Z.; Wang, Z.; Zhu, J. Direct Conversion of Perovskite Thin
Films into Nanowires with Kinetic Control for Flexible Optoelec-
tronic Devices. Nano Lett. 2016, 16, 871–876.
(
20) Aharon, S.; Etgar, L. Two Dimensional Organometal Hal-
3 2 9
timony Nonachloride, Cs Sb Cl . Z. Für Krist. - Cryst. Mater. 1971,
ide Perovskite Nanorods with Tunable Optical Properties. Nano
Lett. 2016, 16, 3230–3235.
134, 142–144.
(37) Kihara, K.; Sudo, T. The Crystal Structures of β-Cs
3 2 9
Sb Cl
(21) Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S.
and Cs Bi Cl . Acta Crystallogr. B 1974, 30, 1088–1093.
3
2
9
C.; Lim, J.; Gao, H.; Yan, R.; Yang, P. 25th Anniversary Article:
Semiconductor Nanowires – Synthesis, Characterization, and
Applications. Adv. Mater. 2014, 26, 2137–2184.
(38) Akkerman, Q. A.; Park, S.; Radicchi, E.; Nunzi, F.; Mosco-
ni, E.; De Angelis, F.; Brescia, R.; Rastogi, P.; Prato, M.; Manna, L.
Nearly Monodisperse Insulator Cs
tals, Their Mixed Halide Compositions, and Their Transfor-
mation into CsPbX Nanocrystals. Nano Lett. 2017, 17, 1924–1930.
4 6
PbX (X = Cl, Br, I) Nanocrys-
(
22) Fu, Y.; Meng, F.; Rowley, M. B.; Thompson, B. J.; Shearer,
M. J.; Ma, D.; Hamers, R. J.; Wright, J. C.; Jin, S. Solution Growth
of Single Crystal Methylammonium Lead Halide Perovskite
Nanostructures for Optoelectronic and Photovoltaic Applica-
tions. J. Am. Chem. Soc. 2015, 137, 5810–5818.
3
(39) Akkerman, Q. A.; D’Innocenzo, V.; Accornero, S.; Scarpel-
lini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the Optical
Properties of Cesium Lead Halide Perovskite Nanocrystals by
Anion Exchange Reactions. J. Am. Chem. Soc. 2015, 137, 10276–
10281.
(40) Rietveld, H. M. Line Profiles of Neutron Powder-
Diffraction Peaks for Structure Refinement. Acta Crystallogr.
1967, 22, 151–152.
(
23) Teunis, M. B.; Jana, A.; Dutta, P.; Johnson, M. A.; Mandal,
M.; Muhoberac, B. B.; Sardar, R. Mesoscale Growth and Assem-
bly of Bright Luminescent Organolead Halide Perovskite Quan-
tum Wires. Chem. Mater. 2016, 28, 5043–5054.
(24) Zhang, D.; Yang, Y.; Bekenstein, Y.; Yu, Y.; Gibson, N. A.;
Wong, A. B.; Eaton, S. W.; Kornienko, N.; Kong, Q.; Lai, M.;
Alivisatos, A. P.; Leone, S. R.; Yang, P. Synthesis of Composition
Tunable and Highly Luminescent Cesium Lead Halide Nan-
owires through Anion-Exchange Reactions. J. Am. Chem. Soc.
(41) Rietveld, H. M. A Profile Refinement Method for Nuclear
and Magnetic Structures. J. Appl. Crystallogr. 1969, 2, 65–71.
(42)
MAUD: Material Analysis Using
Diffraction
http://maud.radiographema.eu/ (accessed Aug 14, 2017).
(43) Kundu, S.; Sain, S.; Satpati, B.; Bhattacharyya, S. R.; Pra-
dhan, S. K. Structural Interpretation, Growth Mechanism and
Optical Properties of ZnO Nanorods Synthesized by a Simple
Wet Chemical Route. RSC Adv. 2015, 5, 23101–23113.
(44) Sain, S.; Kar, A.; Patra, A.; Pradhan, S. K. Structural Inter-
2
pretation of SnO Nanocrystals of Different Morphologies Syn-
thesized by Microwave Irradiation and Hydrothermal Methods.
CrystEngComm 2014, 16, 1079–1090.
(45) Swarnkar, A.; Chulliyil, R.; Ravi, V. K.; Irfanullah, M.;
3
Chowdhury, A.; Nag, A. Colloidal CsPbBr Perovskite Nanocrys-
tals: Luminescence beyond Traditional Quantum Dots. Angew.
Chem. 2015, 127, 15644–15648.
2
016, 138, 7236–7239.
25) Imran, M.; Di Stasio, F.; Dang, Z.; Canale, C.; Khan, A. H.;
Shamsi, J.; Brescia, R.; Prato, M.; Manna, L. Colloidal Synthesis of
Strongly Fluorescent CsPbBr Nanowires with Width Tunable
down to the Quantum Confinement Regime. Chem. Mater. 2016,
8, 6450–6454.
26) Udayabhaskararao, T.; Kazes, M.; Houben, L.; Lin, H.;
(
3
2
(
Oron, D. Nucleation, Growth, and Structural Transformations of
Perovskite Nanocrystals. Chem. Mater. 2017, 29, 1302–1308.
(
27) van der Stam, W.; Geuchies, J. J.; Altantzis, T.; van den
Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.;
Vanmaekelbergh, D.; de Mello Donega, C. Highly Emissive Diva-
lent-Ion-Doped Colloidal CsPb1–x
M
x
Br
3
Perovskite Nanocrystals
(46) Ravi, V. K.; Markad, G. B.; Nag, A. Band Edge Energies
and Excitonic Transition Probabilities of Colloidal CsPbX (X =
3
8
ACS Paragon Plus Environment