For (2)-4: [a]2D2 20.75 [c 0.70 in CHCl3–MeOH (1:1)].
phosphoramidite (+)-9, and the product was then cleaved at the
3,4-acetal with acid (AcCl–MeOH) to afford the 3,4-diol 13.
Phosphitylation of the free hydroxy groups with bis(benzyl-
oxy)(N,N-diisopropylamino)phosphine and 1H-tetrazole, fol-
lowed by in situ oxidation with MCPBA, afforded the common
fully protected phospholipid (+)-10. This route required two
fewer steps than the original procedure, as the p-methoxybenzyl
protection and deprotection at the d-1-hydroxy are not required.
The overall yield is slightly better than that of the original
procedure.
For (+)-5, the dipalmitoyl analogue of PtdIns(3,4,5)P3: [a]2D2 +1.85 [c
0.60 in CHCl3–MeOH (1:1)]; dH (400 MHz, [2H6]DMSO) 5.19–5.11 (1 H,
m), 4.47 (1 H, m), 4.31–3.99 (8 H, m), 3.75 (1 H, t, J 9.4), 2.33–2.22 (4 H,
m), 1.54–1.45 (4 H, m), 1.29–1.19 (48 H, m), 0.85 (6 H, m); dP (101 MHz,
[2H6]DMSO) 1.22, 0.98, 0.59, 20.20; Found (FAB): (M + H)+, 1051.4350.
C41H83O22P4 requires (M + H)+, 1051.4326].
For (2)-5: [a]2D2 21.75 [c 0.75 in CHCl3–MeOH (1:1)].
‡ Compound (2)-9 was synthesised in a similar manner to (+)-9 starting
from (R)-(2)-2,2-dimethyl-1,3-dioxolane-4-methanol (Aldrich).
In summary we have demonstrated a general synthesis of
3-phosphorylated myo-inositol phospholipids 4 and 5 from the
homochiral precursors 6 and 11 which also allows the synthesis
of enantiomeric derivatives containing the unnatural stereo-
chemistry. These materials play an important roˆle in evaluating
the activation of protein kinase B.11
1 A. Toker, M. Meyer, K. K. Reddy, J. R. Falck, R. Aneja, S. Aneja,
A. Parra, D. J. Burns, L. M. Ballas and L. C. Cantley, J. Biol. Chem.,
1994, 269, 32 358.
2 M. J. Berridge, Nature, 1993, 361, 315.
3 L. R. Stephens, T. R. Jackson and P. T. Hawkins, Biochem. Biophys.
Acta, 1993, 1179, 27.
We thank the EPSRC and BBSRC for financial support and
provision of the Swansea Mass Spectrometry Service, Glaxo-
Wellcome for a CASE studentship (to S. J. A. G.), Drs D. R.
Marshall and M. L. Hill for their interest in this work and Dr A.
P. Kozikowski for experimental details of debenzylation
procedures.
4 L. A. Serunian, M. T. Haber, T. Fukui, J. W. Kim, S. G. Rhee,
J. M. Lowenstein and L. C. Cantley, J. Biol. Chem., 1989, 264,
17 809.
5 M. J. Berridge and R. F. Irvine, Nature, 1989, 341, 197; S. G. Rhee and
K. D. Choi, J. Biol. Chem., 1992, 267, 12 393.
6 S. J. A. Grove, I. H. Gilbert, A. B. Holmes, G. F. Painter and M. L. Hill,
preceding communication.
7 K.-L. Yu and B. Fraser-Reid, Tetrahedron Lett., 1988, 29, 979.
8 J. C. Snowden and H. O. L. Fischer, J. Am. Chem. Soc., 1941, 63,
3244.
9 C. E. Dreef, C. J. J. Elie, P. Hoogerhout, G. A. van der Marel and
J. H. van Boom, Tetrahedron Lett., 1988, 29, 6513.
10 A. P. Kozikowski, G. Powis and W. Tu¨ckmantel, Angew. Chem., Int.
Ed. Engl., 1992, 31, 1379.
11 D. Stokoe, L. R. Stephens, T. Copeland, P. Gaffney, C. B. Reese,
G. F. Painter, A. B. Holmes, F. McCormick and P. T. Hawkins, Science,
1997, in the press.
Footnotes and References
E-mail: abh1@cus.cam.ac.uk
† All new compounds exhibited spectroscopic and analytical data in accord
with the assigned structure (J values in Hz). Selected data for (+)-4, the
dipalmitoyl analogue of PtdIns(3,4)P2: [a]2D2 +0.65 [c 1.1 in CHCl3–MeOH
(1:1)]; dH (400 MHz, [2H6]DMSO) 5.18–5.11 (1 H, m), 4.35–4.28 (2 H, m),
4.14–4.02 (5 H, m), 3.90 (1 H, br t, J 9.1), 3.60 (1 H, t, J 9.3), 3.25 (1 H t,
J 9.0), 2.33–2.24 (4 H, m), 1.55–1.44 (4 H, m), 1.28–1.19 (48 H, m), 0.85
(6 H, br t, J 6.7); dP (101 MHz, [2H6]DMSO) 1.64, 1.00, 20.16; Found
(FAB MS): (M + H + H)+, 972.4794. C41H83O19P3 requires (M + H + H)+,
972.4741.
Received in in Glasgow, UK, 6th May 1997; 7/03045B
1636
Chem. Commun., 1997