Oshima et al.
chemical functionalization, and the further development of
fullerene chemistry. For example, Haddon et al. reported a
comparative study of electron-withdrawing substituents on
methanofullerene (C61), correlating the first reduction potential
6
with the Hammett σm. Scorrano et al. tried to quantitatively
evaluate the substituent effect of fullerene ring from the pK value
7
of a fullerene based benzoic acid. However, to the best of our
knowledge, a systematic kinetic study of the reaction of C60
and higher C70 has not yet been reported.3b In addition, the
question remains open as to whether the C60 is more reactive
than C70 and on how large the reactivity of C60 is as compared
with the common acceptor dipolarophiles.
To gain more insight into the chemical reactivity of fullerenes
C60 and C70, we have investigated the kinetics of 1,3-dipolar
cycloaddition of a series of meta- and para-substituted diphen-
yldiazomethanes (DDMs, 1a-m) with spherical C60 and C70
as a model reaction (Scheme 1). We have also compared them
with similar additions of DDMs to TCNE, DDQ, and chloranil
(CA) to explore the steric and electronic effects of fullerene
reactions.
Results and Discussion
Kinetic Measurements. The kinetic measurements were
carried out under pseudo-first-order conditions, using a large
(
2) (a) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson, O¨ .
Science 1991, 254, 1186-1188. (b) Diederich, F. Nature 1994, 369, 199-
2
07. (c) Taylor, R.; Walton, D. R. M. Nature 1993, 363, 685-693. (d)
Hirsch, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 1138-1141. (e)
Diederich, F.; Issacs, L.; Philp, D. Chem. Soc. ReV. 1994, 23, 243-255.
excess of DDMs (25-50 equiv) with respect to C60 and C70.
The progress of the reaction was followed by HPLC, using a
Buckeyprep column. The representative HPLC chart obtained
(
3) (a) Pang, L. S. K.; Wilson, M. A. J. Phys. Chem. 1993, 97, 6761-
6
7
763. (b) Mestres, J.; Duran, M.; Sol a` , M. J. Phys. Chem. 1996, 100, 7449-
454 and references therein. (c) Ohno, M.; Azuma, T.; Kojima, S.;
-
3
for the kinetic solution initially containing C60 (1.0 × 10 mM)
Shirakawa, Y.; Eguchi, S. Tetrahedron 1996, 52, 4983-4994. (d) Wang,
-
2
G.-W.; Saunders, M.; Cross, R. J. J. Am. Chem. Soc. 2001, 123, 256-259.
and 1c (4.0 × 10 mM) in toluene at 30 °C on 0.5 h standing
was shown along with the time course of the product distribu-
tions in Figure 1. There is the buildup of two monoadducts
(fulleroid (B) and methanofullerene (C)) and some bisadducts
(
3
e) Kr a¨ utler, B.; M u¨ ller, T.; Duarte-Ruiz, A. Chem. Eur. J. 2001, 7, 3223-
235. (f) Miller, G. P.; Mack, J. Org. Lett. 2000, 2, 3979-3982. (g) Miller,
G. P.; Mack, J.; Briggs, J. Org. Lett. 2000, 2, 3983-3986. (h) Paquette, L.
A.; Graham, R. J. J. Org. Chem. 1995, 60, 2958-2959. (i) Chronakis, N.;
Orfanopoulos, M. Org. Lett. 2001, 3, 545-548. (j) Chronakis, N.; Froadakis,
G.; Orfanopoulos, M. J. Org. Chem. 2002, 67, 3284-3289. (k) Sarova, G.
H.; Berberan-Santos, M. N. Chem. Phys. Lett. 2004, 397, 402.
(
D) between peaks of 1c and C60 (A). The identity of adduct B
as fulleroid is due to the complete thermal isomerization to the
methanofullerene C at 160 °C for 15 h in o-dichlorobenzene.
Monitoring the kinetic reaction by HPLC showed the gradual
increase of both B and C accompanied by the first-order decay
of C60 (A). Similarly, we also observed the formation of several
1:1 and 1:2 adducts in the reaction with C70 (for more details
(4) (a) Smith, A. B., III; Strongin, R. M.; Brard, L.; Furst, G. T.;
Romanow, W. J.; Qwens, K. G.; Goldschmidt, R. J.; King, R. C. J. Am.
Chem. Soc. 1995, 117, 5492-5502. (b) Suzuki, T.; Li, Q.; Khemani, K.
C.; Wudl, F. J. Am. Chem. Soc. 1992, 114, 7301-7302. (c) Smith, A. B.,
III; Strongin, R. M.; Brard, L.; Furst, G. T.; Romanow, W. J.; Qwens, K.
G.; King, R. C. J. Am. Chem. Soc. 1993, 115, 5829-5830. (d) Schick, G.;
Hirsch, A. Tetrahedron 1998, 54, 4283-4296. (e) Prato, M.; Suzuki, T.;
Wudl, F.; Lucchni, V.; Maggini, M. J. Am. Chem. Soc. 1993, 115, 7876-
8
see the Supporting Information). The natural logarithmic plots
of the signal intensities of the remaining C60 and C70 relative
7
7
1
877. (f) Wilson, S. R.; Wu, Y. J. Chem. Soc., Chem. Commun. 1993, 784-
86. (g) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F. J. Am. Chem. Soc.
992, 114, 7301-7302. (h) Shi, S.; Khemani, K. C.; Li, Q.; Wudl, F. J.
Am. Chem. Soc. 1992, 114, 10656-10657. (i) Prato, M.; Bianco, A.;
Maggini, M.; Scorrano, G.; Toniolo, C.; Wudl, F. J. Org. Chem. 1993, 58,
5
578-5580. (j) Wooley, K. L.; Hawker, C. J.; Fr e` het, J. M. J.; Wudl, F.;
Srdanov, G.; Shi, S.; Li, C.; Kao, M. J. Am. Chem. Soc. 1993, 115, 9836-
837.
5) (a) Wudl, F. Acc. Chem. Res. 1992, 25, 157-161. (b) Isaacs, L.;
9
(
Wehrsing, A.; Diederich, F. HelV. Chim. Acta 1993, 76, 1231-1250. (c)
Prato, M.; Lucchini, V.; Maggini, M.; Stimpfl, E.; Scorrano, G.; Eiermann,
M.; Suzuki, T.; Wudl, F. J. Am. Chem. Soc. 1993, 115, 8479-8480. (d)
Diederich, F.; Isaacs, L.; Philp, D. J. Chem. Soc., Perkin Trans. 2 1994,
3
91-394. (e) Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao,
J.; Wilrins, C. L. J. Org. Chem. 1995, 60, 532-538. (f) Li, Z.; Bouhadir,
K. H.; Shevlin, P. B. Tetrahedron Lett. 1996, 37, 4651-4654. (g) Ishida,
T.; Shinozuka, K.; Nogami, T.; Kubota, M.; Ohashi, M. Tetrahedron 1996,
5
1
1
2, 5103-5112. (h) Li, Z.; Shevlin, P. B. J. Am. Chem. Soc. 1997, 119,
149-1150. (i) Hall, M. H.; Lu, H.; Shevlin, P. B. J. Am. Chem. Soc. 2001,
23, 1349-1354.
FIGURE 1. (a) Typical HPLC trace of the sample aliquot (t ) 0.5 h)
of the reaction of 1c and C60 with a mixture of toluene/hexane (4/1,
v/v). (b) Time course of the reaction of 1c with C60 in toluene at 30
(
6) Keshavarz, M.-K.; Knight, B.; Haddon, R. C.; Wudl, F. Tetrahedron
°
C. Relative intensity of each component was obtained by dividing its
1
996, 52, 5149-5159.
7) Bagno, A.; Claeson, S.; Maggini, M.; Martini, M. L.; Prato, M.;
Scorrano, G. Chem. Eur. J. 2002, 8, 1016-1023.
(
signal intensity by that of the first aliquot C60: C60 (A), fulleroid (B),
and methanofullerene (C).
2996 J. Org. Chem., Vol. 71, No. 8, 2006