ORGANIC
LETTERS
2011
Vol. 13, No. 14
3572–3575
Synthesis of a Novel Class of
Cyclodextrin-Based Nanotubes
Aixia Wang, Wenling Li,† Ping Zhang, and Chang-Chun Ling*
Alberta Ingenuity Centre for Carbohydrate Science, Department of Chemistry,
University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
Received April 22, 2011
ABSTRACT
The synthesis and characterization of a novel class of structurally well-defined nanotubes from β-cyclodextrin are described. These new hosts
were formed using disulfide linkages that substitute all the primary hydroxyl groups of a β-cyclodextrin. A deep and rigid hydrophobic channel
with a size of more than 1.5 nm is found in the molecules. Because of their unique geometry and the potential biodegradability of the disulfide
bond, this class of molecules could find broad applications in biology and other areas of research.
Cyclodextrins (CDs)1 attract attention from different
research fields because of their unique hydrophobic cav-
ities which can host a range of organic compounds via
noncovalent interaction. The building blocks of all natural
CDs consist of the same R-glucopyranosyl unit which
forms the wall of all cavities; therefore all CD cavities have
potential to interact with guest molecules with high affinity
and specificity by taking advantage of the cooperative
effect.4,5 Following Tabushi and Harada’s pioneer work,6
the syntheses of CD-based dimers,7 trimers,8 tetramers,9
(4) Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 39, 681.
(5) (a) Breslow, R.; Halfon, S.; Zhang, B. Tetrahedron 1995, 51, 377
and references therein. (b) Breslow, R.; Chung, S. J. Am. Chem. Soc.
1990, 112, 9659.
(6) (a) Tabushi, I.; Kuroda, Y.; Shimokawa, K. J. Am. Chem. Soc.
1614, 1979, 101. (b) Harada, A.; Furue, M.; Nozakura, S.-I. Polym. J.
1980, 12, 29.
(7) (a) Breslow, R.; Greenspoon, N.; Guo, T.; Zarzycki, R. J. Am.
Chem. Soc. 1989, 111, 8296. (b) Yuan, D.-Q.; Immel, S.; Koga, K.;
Yamaguchi, M.; Fujita, K. Chem.;Eur. J. 2003, 9, 3501. (c) Brady, B.;
Darcy, R. Carbohydr. Res. 1998, 309, 237. (d) de Jong, M. R.; Engbersen,
J. F. J.; Huskens, J.; Reinhoudt, D. N. Chem.;Eur. J. 2000, 6, 4034. (e)
Liu, Y.; Chen, Y.; Liu, S.-X.; Guan, X.-D.; Wada, T.; Inoue, Y. Org.
Lett. 2001, 3, 1657. (f) Dong, D.; Baigl, D.; Cui, Y.; Sinay, P.; Sollogoub,
M.; Zhang, Y. Tetrahedron 2007, 63, 2973. (g) Aime, S.; Gianolio, E.;
Palmisano, G.; Robaldo, B.; Barge, A.; Boffa, L.; Cravotto, G. Org.
Biomol. Chem. 2006, 4, 1124. (h) Fujita, K.; Ejima, S.; Imoto, T. Chem.
Commun. 1984, 1277. (i) Okabe, Y.; Yamamura, H.; Obe, K.; Ohta, K.;
Kawai, M.; Fujita, K. Chem. Commun. 1995, 581. (j) Breslow, R.;
Greenspoon, N.; Guo, T.; Zarycki, R. J. Am. Chem. Soc. 1989, 121,
8296. (k) Chiu, S.-H.; Myles, S. C.; Garrell, R. L.; Stoddart, J. F. J. Org.
Chem. 2000, 65, 2792.
˚
the same height (7.9 A). However, the cavityvolumes differ
according to the number of R-glucopyranosyl units in-
volved in forming the host molecule. For example, R-CD
constitutes six sugar units, generating a cavity with a fixed
3
˚
volume of 174 A . The other two homologues, the β- and
γ-CDs, which are formed with 7 and 8 sugar units, produce
3
larger but still fixed cavity volumes of 262 and 424 A ,
˚
respectively. There has been considerable interest in devel-
oping chemistry to create novel hosts with increased
volumes to augment CD’s inclusion capability. Among
the many strategies reported in the literature,2 oligomer-
ization of CD monomers3 using linkers of variable nature
is the most attractive because this creates linear or
branched CD hosts with multiple cavities that have the
(8) (a) Leung, D. K.; Atkins, J. H.; Breslow, R. Tetrahedron Lett.
2001, 42, 6255. (b) Okabe, Y.; Yamamura, M.; Obe, K.; Ohta, K.;
Kawai, M.; Fujita, K. Chem. Commun. 1995, 581. (c) Liu, Y.; Li, L.; Li,
X.-Y.; Zhang, H.-Y.; Wada, T.; Inoue, Y. J. Org. Chem. 2003, 68, 3646.
(d) Sasaki, K.; Nagasaka, M.; Kuroda, Y. Chem. Commun. 2001, 2630.
(9) (a) Jiang, T.; Li, M.; Lawrence, D. S. J. Org. Chem. 1995, 60, 7293.
(b) Breslow, R.; Zhang, X.; Xu, R.; Maletic, M.; Merger, R. J. Am.
† Present address: School of Chemical and Biological Engineering,
Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. of China.
(1) Szeitli, J. Cyclodextrin Technology; Kluwer Academic Publishers:
Dordrecht, 1988.
(2) Engeldinger, E.; Armspach, D.; Matt, D. Chem. Rev. 2003, 103,
4147.
ꢀ
ꢀ
(3) For a review, see: Sliwa, W.; Girek, T.; Koziol, J. J. Curr. Org.
Chem. 2004, 8, 1445.
Chem. Soc. 1996, 118, 11678. (c) Lecourt, T.; Bleriot, Y.; Auzely-Velty,
R.; Sollogoub, M. Chem. Commun. 2010, 46, 2238.
r
10.1021/ol201065u
Published on Web 06/13/2011
2011 American Chemical Society