H. Saito et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5370–5373
5373
different experiments. After 24-h incubation of the cells in the
presence or absence of compound 5, the cells were stained with
Hoechst 33342, and morphological changes were observed by fluo-
rescence microscopy (Fig. 3).24 In the control experiment, the nu-
clei of the neuroblastoma cells were round in shape and stained
homogenously. The cells treated with 50-methoxyindirubin (5)
showed typical morphological features of apoptosis such as cell
shrinkage, chromatin condensation and fragmented fluorescent
nuclei like that of authentic apoptosis inducer, cisplatin (CDDP).25
Moreover, cells were subjected to flow cytometry after Annexin V
and propidium iodide (PI) double staining.26 Figure 4A shows the
distribution of stained cells prepared from vehicle control and 50-
Nihon University) for performing the mass measurement. This re-
search was supported in part by a grant from a Nihon University
Multidisciplinary Research Grant for S.M. (2010ꢀ2011).
References and notes
1. Bolande, R. P. Hum. Pathol. 1974, 5, 409.
2. Nakagawara, A.; Ohira, M. Cancer Lett. 2004, 204, 213.
3. Torkin, R.; Lavoie, J. F.; Kaplan, D. R.; Yeger, H. Mol. Cancer Ther. 2005, 4, 1.
4. Tonini, G. P.; Pistoia, V. Curr. Pharm. Design 2006, 12, 2303.
5. Maris, J. M.; Matthay, K. K. J. Clin. Oncol. 1999, 17, 2264.
6. Poulaki, V.; Mitsiades, N.; Romero, M. E.; Tsokos, M. Cancer Res. 2001, 61, 4864.
7. Perabo, F. G. E.; Landwehrs, G.; Frössler, C.; Schmidt, D. H.; Mueller, S. C. Urol.
Oncol-Semin. Ori. 2009, in press.
8. Shi, J.; Shen, H.-M. Biochem. Pharmacol. 2008, 75, 1729.
9. Kameswaran, T. R.; Ramanibai, R. Biomed. Pharmacother. 2009, 63, 146.
10. Ribas, J.; Bettayeb, K.; Ferandin, Y.; Knockaert, M.; Garrofé-Ochoa, X.; Totzke, F.;
Schächtele, C.; Mester, J.; Polychronopoulos, P.; Magiatis, P.; Skaltsounis, A.-L.;
Boix, J.; Meijer, L. Oncogene 2006, 25, 6304.
11. Hoessel, R.; Leclerc, S.; Endicott, J. A.; Nobel, M. E. M.; Lawrie, A.; Tunnah, P.;
Leost, M.; Damiens, E.; Marie, D.; Marko, D.; Niederberger, E.; Tang, W.;
Eisenbrand, G.; Meijer, L. Nat. Cell. Biol. 1999, 1, 60.
12. Katritzky, A. R.; Fan, W.-Q.; Koziol, A. E.; Palenik, G. J. J. Heterocycl. Chem. 1989,
26, 821.
methoxyindirubin (5) (100
of apoptotic cells were estimated based on Figure 4A, and dramat-
ically increased at 100 M concentration of the indirubin 5 in both
l
M) as examples.27 The percentages
l
early and late apoptosis (Fig. 4B). These results lead us to conclude
that the mechanism of cell death induced by 50-methoxyindirubin
(5) is apoptosis. Indirubins are known to inhibit cyclin-dependent
kinases (CDKs) by binding to their ATP-binding site.11 The inhibi-
tion of CDKs by indirubins arrests the cell cycle in the G1 and/or
G2/M phases, prohibits cell growth, and induces apoptosis.8,28–32
Since apoptotic mechanisms are involved in chemotherapeutic
sensitivity and spontaneous regression of neuroblastoma, 50-meth-
oxyindirubin (5) may have comparatively high potential against
neuroblastoma.
13. Bergman, J.; Lindström, J.; Tilstam, U. Tetrahedron 1985, 41, 2879.
14. Grimshaw, J.; Begley, W. Synthesis 1974, 496.
15. Tabata, K.; Motani, K.; Takayanagi, N.; Nishimura, R.; Asami, S.; Kimura, Y.;
Ukiya, M.; Hasegawa, D.; Akihisa, T.; Suzuki, T. Biol. Pharm. Bull. 2005, 28, 1404.
16. Nishimura, R.; Tabata, K.; Arakawa, M.; Ito, Y.; Kimura, Y.; Akihisa, T.; Nagai, H.;
Sakuma, A.; Kohno, H.; Suzuki, T. Biol. Pharm. Bull. 2007, 30, 1878.
17. Yamaguchi, Y.; Tabata, K.; Asami, S.; Miyake, M.; Suzuki, T. Biol. Pharm. Bull.
2007, 30, 638.
In summary, we prepared indirubins with two different types of
substituents, methoxy group or bromine, on the aromatic rings for
systematic screening. We found that 50- and 60-methoxy-indiru-
bins (5 and 6) showed significant cytotoxicity to neuro-blastoma
cells. When the carbonyl group at 30-position was oxime, cytotox-
icity appeared in every indirubin examined. In this case, indirubin
30-oxime (14) and its 6-methoxylated derivative (16) showed
selective cytotoxicity to neuroblastoma, while its 50-methoxylated
derivative (18) did not show any selectivity. Thus, it has been con-
cluded that 50-methoxyindirubin (5) is the most favorable indiru-
bin examined for specific induction of cell death in
neuroblastoma. Moreover, we concluded that the methoxy group
is preferable to induce selective cytotoxicity against neuroblas-
toma rather than alkyl or bromine (5 vs. 7, 8, and 12). It was further
clarified that 50-methoxyindirubin (5) induced early and late apop-
tosis in neuroblastoma cells. Further studies are needed to eluci-
date the mechanism of apoptosis by biochemical approaches.
Nonetheless, present data reinforce the anticancer potential of
indirubins.
18. Motani, K.; Tabata, K.; Kimura, Y.; Okano, S.; Shibata, Y.; Abiko, Y.; Nagai, H.;
Akihisa, T.; Suzuki, T. Biol. Pharm. Bull. 2008, 31, 618.
19. Postiglione, L.; Di Domenico, G.; Caraglia, M.; Marra, M.; Giuberti, G.; Del
Vecchio, L.; Montagnani, S.; Macri, M.; Bruno, E. M.; Abbruzzese, A.; Rossi, G.
Int. J. Oncol. 2005, 26, 1193.
20. Yanamoto, S.; Iwamoto, T.; Kawasaki, G.; Yoshitomi, I.; Baba, N.; Mizuno, A.
Cancer Lett. 2005, 223, 67.
21. Kimura, Y.; Taniguchi, M.; Baba, K. Plant. Med. 2004, 70, 211.
22. Kimura, Y.; Baba, K. Int. J. Cancer 2003, 106, 429.
23. Choi, S. J.; Lee, J. E.; Jeong, S. Y.; Im, I.; Lee, S. D.; Lee, E. J.; Lee, S. K.; Kwon, S. M.;
Ahn, S. G.; Yoon, J. H.; Han, S. Y.; Kim, J. I.; Kim, Y. C. J. Med. Chem. 2010, 53,
3696.
24. Sandhu, L. C.; Warters, R. L.; Dethlefsen, L. A. Cytometry 1985, 6, 191.
25. Piacentini, M.; Fesus, L.; Melino, G. FEBS Lett. 1993, 320, 150.
26. Pfaffel-Schubart, G.; Scalfi-Happ, C.; Rück, A. Med. Laser Appl. 2008, 23, 25.
27. We additionally determined cell survival of neuroblastoma and normal cells at
100 lM of compound 5. The survival rates of all three of the neuroblastoma cell
lines were approximately 10% while that of NHDF was more than 80%.
Unfortunately, HUVEC cells were damaged at this concentration and the
survival rate was approximately 40%.
28. Libnow, S.; Methling, K.; Hein, M.; Michalik, D.; Harms, M.; Wende, K.;
Flemming, A.; Köckerling, M.; Reinke, H.; Bednarski, P. J.; Lalk, M.; Langer, P.
Bioorg. Med. Chem. 2008, 16, 5570.
29. Nam, S.; Buettner, R.; Turkson, J.; Kim, D.; Cheng, J. Q.; Muehlbeyer, S.; Hippe,
F.; Vatter, S.; Merz, K. H.; Eisenbrand, G.; Jove, R. Proc. Natl. Acad. Sci. U.S.A.
2005, 102, 5998.
Acknowledgments
30. Kim, S.-A.; Kim, S.-W.; Chang, S.; Yoon, J.-H.; Ahn, S.-G. Cancer Lett. 2009, 274,
72.
31. Kim, S.-A.; Kim, Y.-C.; Kim, S.-W.; Lee, S.-H.; Min, J.-J.; Ahn, S.-G.; Yoon, J.-H.
Clin. Cancer Res. 2007, 13, 253.
32. Lee, J.-W.; Moon, M. J.; Min, H.-Y.; Chung, H.-J.; Park, E.-J.; Park, H. J.; Hong, J.-
Y.; Kim, Y.-C.; Lee, S. K. Bioorg. Med. Chem. Lett. 2005, 15, 3948.
The authors are grateful to Ms. Konomi Tanaka and Ms. Fumina
Amemiya for technical assistance in the experimental work. The
authors thank Dr. Toshimitsu Suzuki, Fukushima Medical Univer-
sity School of Medicine, for providing NB-39 cells. The authors also
thank Dr. Koichi Metori (Analytical Center, School of Pharmacy,