10.1002/anie.202012620
Angewandte Chemie International Edition
COMMUNICATION
adding to their prior roles as delivery agents for the more well-
known gasotransmitters CO and NO.[61–67]
Deng, Y.-N. Liu, Chem. Commun. 2015, 51, 9193–9196.
[17]
N. Fukushima, N. Ieda, K. Sasakura, T. Nagano, K. Hanaoka, T.
Suzuki, N. Miyata, H. Nakagawa, Chem. Commun. 2014, 50, 587–
589.
Acknowledgements
[18]
[19]
[20]
A. K. Sharma, M. Nair, P. Chauhan, K. Gupta, D. K. Saini, H.
Chakrapani, Org. Lett. 2017, 19, 4822–4825.
S. Y. Yi, Y. K. Moon, S. Kim, S. Kim, G. Park, J. J. Kim, Y. You,
Chem. Commun. 2017, 53, 11830–11833.
This work was supported by the National Science Foundation
(NSF-GRFP for J. J. Woods DGE-1650441 and NSF CAREER for
J. J. Wilson CHE-1750295) and the American Heart Association
(predoctoral fellowship for J. J. Woods, 20PRE35120390). This
work made use of the Cornell University NMR facility, which is
supported in part by the NSF (CHE-1531632), and the Cornell
Institute of Biotechnology Imaging Facility, which is supported in
part by the NIH (NIH S10RR025502). Dr. Weiwei An and
Professor Alexander R. Lippert (Southern Methodist University)
are thanked for supplying SF4. Ida DiMucci and Professor Kyle
Lancaster (Cornell University) are thanked for assistance with
Resonance Raman spectroscopy. Professor Jeremey Baskin is
thanked for use of his confocal fluorescence microscope.
Z. Xiao, T. Bonnard, A. Shakouri-Motlagh, R. A. L. Wylie, J. Collins,
J. White, D. E. Heath, C. E. Hagemeyer, L. A. Connal, Chem. Eur.
J. 2017, 23, 11294–11300.
[21]
[22]
Y. Zhao, S. G. Bolton, M. D. Pluth, Org. Lett. 2017, 19, 2278–2281.
J. Kang, Z. Li, C. L. Organ, C.-M. Park, C. Yang, A. Pacheco, D.
Wang, D. J. Lefer, M. Xian, J. Am. Chem. Soc. 2016, 138, 6336–
6339.
[23]
[24]
[25]
A. K. Gilbert, Y. Zhao, C. E. Otteson, M. D. Pluth, J. Org. Chem.
2019, 84, 14469–14475.
Y. Zhao, M. D. Pluth, Angew. Chem. Int. Ed. 2016, 55, 14638–
14642.
C. R. Powell, K. M. Dillon, Y. Wang, R. J. Carrazzone, J. B. Matson,
Angew. Chemie 2018, 130, 6432–6436.
Conflict of Interest
[26]
[27]
W. R. Wilson, M. P. Hay, Nat. Rev. Cancer 2011, 11, 393–410.
I. Romero-Canelón, P. J. Sadler, Inorg. Chem. 2013, 52, 12276–
12291.
None reported.
[28]
U. Jungwirth, C. R. Kowol, B. K. Keppler, C. G. Hartinger, W.
Berger, P. Heffeter, Antioxidants Redox Signal. 2011, 15, 1085–
1127.
Keywords: ruthenium complexes • hydrogen sulfide • hypoxia •
persulfide complex • reduction-activated
[29]
[30]
A. Sharma, J. F. Arambula, S. Koo, R. Kumar, H. Singh, J. L.
Sessler, J. S. Kim, Chem. Soc. Rev. 2019, 48, 771–813.
E. Reisner, V. B. Arion, B. K. Keppler, A. J. L. Pombeiro, Inorg.
Chim. Acta. 2008, 361, 1569–1583.
[1]
[2]
K. Abe, H. Kimura, J. Neurosci. 1996, 16, 1066–1071.
H. Liu, M. N. Radford, C. Yang, W. Chen, M. Xian, Br. J. Pharmacol.
2019, 176, 616–627.
[3]
[4]
J. L. Wallace, R. Wang, Nat. Rev. Drug Discov. 2015, 14, 329–345.
J. C. Foster, S. C. Radzinski, X. Zou, C. V Finkielstein, J. B. Matson,
Mol. Pharm. 2017, 14, 1300–1306.
[31]
[32]
N. Graf, S. J. Lippard, Adv. Drug Deliv. Rev. 2012, 64, 993–1004.
C. R. Brulet, S. S. Isied, H. Taube, J. Am. Chem. Soc. 1973, 95,
4758–4759.
[5]
M. Whiteman, A. Perry, Z. Zhou, M. Bucci, A. Papapetropoulos, G.
Cirino, M. E. Wood, in Handb. Exp. Pharmacol., 2015, pp. 337–363.
C. R. Powell, K. M. Dillon, J. B. Matson, Biochem. Pharmacol. 2018,
149, 110–123.
[33]
[34]
J. Amarasekera, T. B. Rauchfuss, Inorg. Chem. 1989, 28, 3875–
3883.
[6]
J. Amarasekera, T. B. Rauchfuss, S. R. Wilson, Inorg. Chem. 1987,
26, 3328–3332.
[7]
P. Rose, B. W. Dymock, P. K. Moore, Methods Enzymol. 2015, 554,
143–167.
[35]
[36]
[37]
R. Steudel, Angew. Chem. Int. Ed. 1975, 14, 655–664.
B. Meyer, Chem. Rev. 1976, 76, 367–388.
[8]
Y. Zhao, A. K. Steiger, M. D. Pluth, J. Am. Chem. Soc. 2019, 141,
13610–13618.
L. R. Maxwell, V. M. Mosley, S. B. Hendricks, Phys. Rev. 1936, 50,
41–45.
[9]
M. M. Cerda, Y. Zhao, M. D. Pluth, J. Am. Chem. Soc. 2018, 140,
12574–12579.
[38]
[39]
A. Mueller, W. Jaegermann, Inorg. Chem. 1979, 18, 2631–2633.
W. R. Wilson, R. F. Anderson, W. A. Denny, J. Med. Chem. 1989,
32, 23–30.
[10]
[11]
C.-M. Park, Y. Zhao, Z. Zhu, A. Pacheco, B. Peng, N. O. Devarie-
Baez, P. Bagdon, H. Zhang, M. Xian, Mol. Biosyst. 2013, 9, 2430.
Y. Zhao, S. Bhushan, C. Yang, H. Otsuka, J. D. Stein, A. Pacheco,
B. Peng, N. O. Devarie-Baez, H. C. Aguilar, D. J. Lefer, et al., ACS
Chem. Biol. 2013, 8, 1283–1290.
[40]
[41]
[42]
A. P. King, H. A. Gellineau, J. E. Ahn, S. N. MacMillan, J. J. Wilson,
Inorg. Chem. 2017, 56, 6609–6623.
C. Liu, W. Chen, W. Shi, B. Peng, Y. Zhao, H. Ma, M. Xian, J. Am.
Chem. Soc. 2014, 136, 7257–7260.
[12]
[13]
[14]
[15]
[16]
K. M. Dillon, R. J. Carrazzone, Y. Wang, C. R. Powell, J. B. Matson,
ACS Macro Lett. 2020, 9, 606–612.
D. R. Frasca, M. J. Clarke, J. Am. Chem. Soc. 1999, 121, 8523–
8532.
Y. Zheng, X. Ji, K. Ji, B. Wang, Acta Pharm. Sin. B 2016, 5, 367–
377.
[43]
[44]
C. G. Kuehn, H. Taube, J. Am. Chem. Soc. 1976, 98, 689–702.
S. Xu, Y. Wang, Z. Parent, M. Xian, Bioorg. Med. Chem. Lett. 2020,
30, 126903.
J. J. Woods, J. Cao, A. R. Lippert, J. J. Wilson, J. Am. Chem. Soc.
2018, 140, 12383–12387.
[45]
[46]
D. Liang, H. Wu, M. W. Wong, D. Huang, Org. Lett. 2015, 17, 4196–
4199.
N. O. Devarie-Baez, P. E. Bagdon, B. Peng, Y. Zhao, C.-M. Park,
M. Xian, Org. Lett. 2013, 15, 2786–2789.
M. M. Cerda, M. D. Hammers, M. S. Earp, L. N. Zakharov, M. D.
W. Chen, M. Chen, Q. Zang, L. Wang, F. Tang, Y. Han, C. Yang, L.
4
This article is protected by copyright. All rights reserved.