Full Paper
coated with a thin layer of gold. Energy-dispersive X-ray spectro-
Cu2+, Mg2+, Zn2+, Mn2+, Co2+, Ni2+, Ca2+, and Cr3+). After immersion
for 36 h, the treated crystals were filtered and their solid lumines-
cence determined.
II
scopy (EDX) analysis was performed to confirm the presence of Cu
II
II
and the replacement of Cd by Cu .
Cd (ettc) (H O) (dmf)] ·(dmf) (UTSA-86): The starting mate-
12n
[
3
1.5
2
2
n
rials Cd(NO ) ·4H O (0.15 g), H ettc (0.08 g), and dmf (5 mL) were
sealed in a 23 mL vial, which was heated at 80 °C for 48 h. After
being cooled to room temperature, the vial was cut open; slightly
3
2
2
4
Acknowledgments
This work was supported by the Welch Foundation (grant num-
yellow crystals suitable for X-ray diffraction were obtained by filtra- ber AX-1730, grant to B. C.).
tion in a yield of 0.11 g, 43 % (based on H ettc ligand). IR (KBr): ν =
4
˜
3
(
031 (m), 1641 (m), 1574 (m), 1514 (s), 1374 (s), 985 (s), 823 (s), 760
m) cm . C120H143Cd N O : C 56.82, H 5.68, N 7.18; found C 56.78,
Keywords: Metal–organic frameworks · Microporous
materials · Gas separation · Luminescence · Sensors · Ligand
design
–1
3 13 27
H 5.63, N 7.17.
Single-Crystal X-ray Diffraction: Crystallographic data for a single
crystal of UTSA-86 was collected with an Oxford Diffraction Super-
Nova diffractometer with Cu-Kα radiation (λ = 1.54184 Å) at
[1] a) H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science 2013,
341, 974; b) J.-P. Zhang, Y.-B. Zhang, J.-B. Lin, X.-M. Chen, Chem. Rev.
1
00.00(16) K. The final unit cell parameters were derived from
2012, 112, 1001–1033; c) O. K. Farha, J. T. Hupp, Acc. Chem. Res. 2010,
global refinements of reflections obtained from the integration of
4
3, 1166–1175; d) M. Li, D. Li, M. O'Keeffe, O. M. Yaghi, Chem. Rev. 2014,
all frame data. The collected frames were integrated by using the
preliminary cell-orientation matrix. CrysAlisPro[
30]
114, 1343–1370; e) Y. Cui, B. Li, H. He, W. Zhou, B. Chen, G. Qian, Acc.
Chem. Res. 2016, 49, 483–493.
software was
used to collect the frames of data, index the reflections, and deter-
mine the lattice constants. SCALE3 ABSPACK software[ was util-
ized for absorption correction. The structure was solved by direct
[
2] a) J. E. Mondloch, M. J. Katz, W. C. Isley III, P. Ghosh, P. Liao, W. Bury, G. W.
Wagner, M. G. Hall, J. B. DeCoste, G. W. Peterson, R. Q. Snurr, C. J. Cramer,
J. T. Hupp, O. K. Farha, Nat. Mater. 2015, 14, 512–516; b) Z. Zhang, H. T. H.
Nguyen, S. A. Miller, S. M. Cohen, Angew. Chem. Int. Ed. 2015, 54, 6152–
6157; Angew. Chem. 2015, 127, 6250; c) H. Wu, Y. S. Chua, V. Krunglevici-
ute, M. Tyagi, P. Chen, T. Yildirim, W. Zhou, J. Am. Chem. Soc. 2013, 135,
30]
methods (SHELXS-97) and refined by full-matrix least-squares meth-
ods on F2 (SHELXL-97).
[31]
Anisotropic thermal parameters were
used for the non-hydrogen atoms and isotropic parameters for the
hydrogen atoms. Hydrogen atoms were added geometrically and
refined by using a riding model. The “PART” restraint was used to
deal with the disorder of the benzene ring in the ettc ligand. In
addition, we note that the “SQUEEZE” command was employed be-
cause of the seriously disordered solvent molecules in the UTSA-86
pores. Selected crystallographic data and pertinent information for
this compound are summarized in Table S1, and selected bond
lengths and angles are listed in Table S2.
1
0525; d) Q.-L. Zhu, Q. Xu, Chem. Soc. Rev. 2014, 43, 5468–5512.
[
3] a) J.-R. Li, J. Sculley, H.-C. Zhou, Chem. Rev. 2012, 112, 869–932; b) H. Wu,
Q. Gong, D. H. Olson, J. Li, Chem. Rev. 2012, 112, 836–868; c) H. Sato, W.
Kosaka, R. Matsuda, A. Hori, Y. Hijikata, R. V. Belosludov, S. Sakaki, M.
Takata, S. Kitagawa, Science 2014, 343, 167–170; d) R. Vaidhyanathan,
S. S. Iremonger, G. K. H. Shimizu, P. G. Boyd, S. Alavi, T. K. Woo, Science
2010, 330, 650–653; e) C. Serre, C. Mellot-Draznieks, S. Surblé, N. Aude-
brand, Y. Filinchuk, G. Férey, Science 2007, 315, 1828–1831; f) P. Nugent,
Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S.
Ma, B. Space, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, Nature 2013, 495,
CCDC 1455687 (for UTSA-86) contains the supplementary crystallo-
8
0–84; g) K. A. Cychosz, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc.
2
2
009, 131, 14538–14543; h) B. Chen, S. Xiang, G. Qian, Acc. Chem. Res.
010, 43, 1115–11124; i) K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDo-
nald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112,
24–781.
4] a) T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982–5993; b) J. Liu, L.
Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Chem. Soc. Rev. 2014, 43, 6011–
Gas Sorption Measurements: Before the gas sorption measure-
ments, as-synthesized crystals of UTSA-86 were exchanged with dry
acetone six times and then evacuated at 6 μmmHg at 393 K to
generate activated UTSA-86. Gas sorption data of activated UTSA-
7
[
6
5
061; c) W.-Y. Gao, M. Chrzanowski, S. Ma, Chem. Soc. Rev. 2014, 43,
841–5866; d) M. Zhao, S. Ou, C.-D. Wu, Acc. Chem. Res. 2014, 47, 1199–
8
6 were collected by using a Micromeritics ASAP 2020 surface area
analyzer; the measurement temperatures were maintained at 196,
73, and 296 K by using a bath of dry ice/acetone slurry, an ice/
1207.
2
[5] a) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2012, 112, 1126–1162; b)
L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne, J. T. Hupp,
Chem. Rev. 2012, 112, 1105–1125; c) Z. Hu, B. J. Deibert, J. Li, Chem. Soc.
Rev. 2014, 43, 5815–5840.
[6] a) J. Yu, Y. Cui, H. Xu, Y. Yang, Z. Wang, B. Chen, G. Qian, Nat. Commun.
2013, 4, 2719; b) P. Ramaswamy, N. E. Wong, G. K. H. Shimizu, Chem. Soc.
Rev. 2014, 43, 5913–5932; c) V. Stavila, A. A. Talin, M. D. Allendorf, Chem.
Soc. Rev. 2014, 43, 5994–6010; d) L. Sun, T. Miyakai, S. Seki, M. Dincă, J.
Am. Chem. Soc. 2013, 135, 8185–8188.
7] a) M. Eddaoudi, D. F. Sava, J. F. Eubank, K. Adil, V. Guillerm, Chem. Soc.
Rev. 2015, 44, 228–249; b) Y. He, B. Li, M. O'Keeffe, B. Chen, Chem. Soc.
Rev. 2014, 43, 5618–5656; c) W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J.
Tian, M. Zhang, Q. Zhang, T. Gentle III, M. Bosch, H.-C. Zhou, Chem. Soc.
Rev. 2014, 43, 5561–5593.
water mixture, and a water bath in an air-conditioned 23 °C labora-
tory, respectively.
IAST Calculations: The adsorption isotherms and gas selectivities
of CO /CH (50:50) and CO /N (15:85) at 273 and 296 K were calcu-
2
4
2
2
lated based on the ideal adsorbed solution theory (IAST) proposed
by Myers and Prausnitz,[
17]
The results are shown in Figure 5, Fig-
ures S5 and S6, and Table S3 in the Supporting Information. To
weight the sorption performance of this MOF towards the separa-
tion of binary mixed gases, the parameters fitted from the single-
component CO , CH , and N adsorption isotherms based on the
[
2
4
2
dual-site Langmuir–Freundlich (DSLF) model were used in the IAST
calculations.[ The fitting parameters of the DSLF equation are
listed in Table S4.
18]
[8] a) A. G. Slater, A. I. Cooper, Science 2015, 348, aaa8075; b) N. C. Burtch,
H. Jasuja, K. S. Walton, Chem. Rev. 2014, 114, 10575–10612.
[
9] R. Hu, N. L. C. Leung, B.-Z. Tang, Chem. Soc. Rev. 2014, 43, 4494–4562.
Luminescence Sensing of UTSA-86: The luminescence of UTSA-86
was investigated in the solid state at room temperature and com-
[
10] A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht Univer-
sity, The Netherlands, 2005.
[11] a) H.-R. Fu, F. Wang, J. Zhang, Dalton Trans. 2014, 43, 4668–4673; b) Y.
Chen, Z. Li, Q. Liu, Y. Shen, X. Wu, D. Xu, X. Ma, L. Wang, Q.-H. Chen, Z.
Zhang, S. Xiang, Cryst. Growth Des. 2015, 15, 3847–3852; c) H. He, Y.
pared with that of H ettc. For the experiments involving the sensing
4
metal ions, crystals of UTSA-86 (15 mg) were immersed in dmf solu-
–
2
+
+
tions (20 mL) containing 1 × 10
M
of M(NO ) ·nH O (M = Na , Ag ,
3 x 2
Eur. J. Inorg. Chem. 0000, 0–0
www.eurjic.org
5
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim