7
28 JOURNAL OF CHEMICAL RESEARCH 2011
Bruker MERCURY-PLUS 400 MHz NMR spectrometer. Chemical
shifts were reported in parts per million (ppm, δ). IR spectra were
measured on an Alpha Centauri FT-IR spectrometer. Melting points
were determined on an XT-4 electrothermal micromelting-point appa-
ratus. Microwave irradiation was carried out with a modified Midea
MM823ESJ-PA domestic microwave oven. In order to avoid the un-
reliable and un-reproducible results by using this microwave oven, all
experiments were conducted at least twice under parallel conditions to
obtain coincident yield.
Electron Supplementary Information
Electron Supplementary Information includes spectroscopic
1
13
data and H NMR, C NMR spectra of all products and is
available online via http://www.ingentaconnect.com/content/
stl/jcr.
Financial support by Natural Science Foundation of China
(20702042), Key Laboratory of Polymer Materials of Gansu
Province (zd-06-18), and NWNU Young Teachers Reseach
Improving Program (NWNU-LKQN-10-11) is acknowl-
edged.
Caution: the use of a domestic microwave oven for chemical
purposes has been found to be potentially hazardous.
Synthesis of β-amino alcohols
A mixture of the amine (0.5 mmol), epoxide (1.5 mmol), EtOH
Received 12 November 2011; accepted 1 December 2011
Paper 1100980 doi: 10.3184/174751911X13237015498335
Published online: 27 December 2011
(
2.0 mL) and H O (2.0 mL) were added to a 50 mL round-bottomed
2
flask. The flask was placed into the domestic microwave oven at
64 W for 8 minutes. After cooling the reaction mixture to room tem-
perature, the contents were extracted with ethyl acetate (4 × 5 mL).
2
References
The combined organic layers were dried over anhydrous MgSO . The
4
1
J. Joossens, P.Van derVeken,A.M. Lambeir, K.Augustyns andA. Haemers,
J. Med. Chem., 2004, 47, 2411.
solvent was removed by evaporation under reduced pressure to
afford the crude products, which were further purified by column
chromatography on silica gel using petroleum ether and ethyl acetate
as eluents.
2
3
4
5
E.J. Corey and F. Zhang, Angew. Chem., Int. Ed., 1999, 38, 1931.
K. Fagnou and M. Lautens, Org. Lett., 2000, 2, 2319.
J.R. Rodríguez and A. Navarro, Tetrahedron Lett., 2004, 45, 7495.
G. Sundararajan, K. Vijayakrishna and B. Varghese, Tetrehedron Lett.,
2
004, 45, 8253.
Physical spectroscopic data of new products
6
7
8
9
F. Carree, R. Gil and J. Collin, Org. Lett., 2005, 7, 1023.
1
-Chloro-3-(2,4-dimethylphenylamino)propan-2-ol (i): A light red
S. Azoulay, K. Manabe and S. Kobayashi, Org. Lett., 2005, 7, 4593.
M. Kokubo, T. Naito and S. Kobayashi, Tetrahedron, 2010, 66, 1111.
R. Chakravarti, H. Oveisi, P. Kalita, R.R. Pal, S.B. Halligudi, M.L. Kantam
and A. Vinu, Microporous Mesoporous Mater., 2009, 123, 338.
1
solid, m.p. 34–35 °C. H NMR (400 MHz, CDCl ) (δ, ppm): δ = 6.91–
3
6
3
.84 (m, 2H, ArH), 6.55–6.51 (m, 1H, ArH), 4.04–3.98 (m, 1H, NH),
.62–3.52 (m, 2H, CH ), 3.33–3.29 (m, 3H, CH & OH), 3.20–3.12
2
2
1
3
10 M.W.C. Robinson, A.M. Davies, I. Mabbett, T.E. Davies, D.C. Apperley,
(
m, 1H, CH), 2.26 (s, 3H, CH ), 2.10 (s, 3H, CH ); C NMR
3
3
S.H. Taylor and A.E. Graham, J. Mol. Catal. A: Chem., 2010, 329, 57.
R. Karimian, B. Piri and M. Abolghasem, Chin. J. Chem., 2011, 29, 955.
J. Wu and H.-G. Xia, Green Chem., 2005, 7, 708.
(
100 MHz, CDCl ) (δ, ppm): δ = 143.1, 131.1, 127.3, 127.0, 122.8,
3
1
1
1
2
1
10.4 (all unsaturated CH), 69.5 (C-O), 47.6 (CH ), 47.2 (CH ), 20.2
2
2
−
1
(
CH ), 17.3 (CH ); IR (KBr, υ/cm ): 3404 (NH), 1618 (benzene ring),
3
3
13 Shivani, B. Pujala and A.K. Chakraborti, J. Org. Chem., 2007, 72, 3713.
14 S.S. Chimni, N. Bala, V.A. Dixit and P.V. Bharatam, Tetrahedron, 2010, 66,
3042.
15 N. Azizi and M.R. Saidi, Org. Lett., 2005, 7, 3649.
6 Z. Wang, Y.T. Cui, Z.B. Xu and J. Qu, J. Org. Chem., 2008, 73, 2270.
1
514 (benzene ring), 1378 (CH ), 749 (C-Cl); Anal. Calcd for
3
C H ClNO (213.09): C, 61.82; H, 7.55; N, 6.55. Found: C, 61.63;
11
16
H, 7.61; N, 6.51%.
-(2,5-Dimethoxyphenyl-amino)-1-phenylethanol (n): A light green
1
2
1
17 A. Robin, F. Brown, N.B. Rosa, B. Wu, E. Beitz, J.F.J. Kun and S.L. Flitsch,
liquid. H NMR (400 MHz, CDCl ) (δ, ppm): δ = 7.36–7.30 (m, 4H,
3
J. Med. Chem., 2007, 50, 4243.
Z. Du, F. Wang, W. Zhou and J.-X. Wang, J. Chem. Res., 2010, 34, 475.
Z. Du, W. Zhou, F. Wang and J.-X. Wang, Tetrahedron, 2011, 67, 4914.
ArH), 7.26–7.22 (m, 1H, ArH), 6.67 (d, J = 8.4 Hz, 1H, ArH), 6.14–
1
8
9
6
4
3
.11 (m, 1H, ArH), 6.02 (d, J = 2.8 Hz, 1H, ArH), 5.04 (s, 1H, NH),
1
.50–4.47 (m, 1H, CH), 3.95–3.76 (m, 2H, CH ), 3.89 (s, 3H, OCH ),
20 Z. Du, W. Zhou, L. Bai, F. Wang and J.-X. Wang, Synlett, 2011, 369.
21 P. Gupta, S. Bhatia, A. Dhawan, S. Balwani, S. Sharma, R. Brahma,
R. Singh, B. Ghosh, V.S. Parmar and A.K. Prasad, Bioorg. Med. Chem.,
2
3
13
.62 (s,3H, OCH ), 1.81 (s, 1H, OH); C NMR (100 MHz, CDCl3)
3
(
δ, ppm): δ = 154.4, 141.8, 140.0, 138.1, 128.8, 127.6, 126.7, 109.8,
2
011, 19, 2263.
A. Kamal, B.R. Prasad, A.M. Reddy and M.N. Khan, Catal. Commun.,
007, 8, 1876.
9
5
9.7, 99.4 (all unsaturated CH), 67.4 (C-O), 59.7 (CH ), 56.0 (OCH ),
2
3
2
2
−
1
5.3 (OCH ); IR (liquid film, υ/cm ): 3420 (NH), 1610 (benzene
3
2
ring), 1519 (benzene ring), 1216 (OCH ); Anal. Calcd for C H NO
3
16 19
3
23 H. Danafar, and B. Yadollahi, Catal. Commun., 2009, 10, 842.
24 L. Saikia, J.K. Satyarthi, D. Srinivas and K. Ratnasamy, J. Catal., 2007,
252, 148.
(
273.14): C, 70.31; H, 7.01; N, 5.12. Found: C, 70.68; H, 7.06;
N, 5.09%.