J. Am. Chem. Soc. 2001, 123, 4651-4652
Signal Processing at the Molecular Level
4651
Fran c¸ isco M. Raymo* and Silvia Giordani
Center for Supramolecular Science
Department of Chemistry, UniVersity of Miami
301 Memorial DriVe, Coral Gables Florida 33146-0431
1
ReceiVed October 16, 2000
ReVised Manuscript ReceiVed February 6, 2001
Human sensory receptors transduce chemical, light, mechanical,
and thermal stimulations into nerve impulses, which are transmit-
1
ted to the brain. This sequence of events involves a concatenation
of processes at the molecular level. At each step, input signals of
one form are converted into output signals of another. This
complex mechanism is related conceptually to the manipulation
2
of binary data in microprocessor systems. The data introduced
into a computer are elaborated through a sequence of logic
operations and converted in a specific output. In modern
microprocessor systems, logic circuits are built integrating
electronic devices. However, they could be fabricated combining
mechanical, pneumatic, or other types of devices, including
Figure 1. The switching cycle associated with the three states SP, ME,
and MEH.
3
molecular-sized switches.
Molecules able to perform simple logic operations are known.4-6
Reliable and efficient methods to integrate organic compounds
into simple circuits are starting to be developed.7-10 The fabrica-
tion of nanoscaled logic circuits incorporating sequences of
molecular switches can be envisaged. The resulting artificial
systems will be able to reproduce the functions of their natural
counterparts by detecting, elaborating, and transmitting signals
at the molecular level. Their development requires first a
fundamental understanding of the behavior of individual molecules
in response to environmental stimulations. It is necessary to
(
1) Wasserman, P. D. Neural Computing: Theory and Practice; Van
Nostrand Reinhold: New York, 1989.
2) Mitchell, R. J. Microprocessor Systems: An Introduction; Macmillan:
(
London, 1995.
(
3) Special issue on “Photochromism: Memories and Switches”, Chem.
ReV. 2000, 100, 1683-1890.
-
4
Figure 2. The absorption spectra of (a) a solution of SP (1.0 × 10 M,
(
4) (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature 1993,
3
64, 42-44. (b) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. J. Am.
MeCN, 25 °C) and of the same solution after the consecutive (b)
Chem. Soc. 1997, 119, 7891-7892. (c) de Silva, A. P.; Dixon, I. M.;
Gunaratne, H. Q. N.; Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J. Am.
Chem. Soc. 1999, 121, 1393-1394. (d) de Silva, A. P.; McClenaghan, N. D.
J. Am. Chem. Soc. 2000, 122, 3965-3966.
irradiation with ultraviolet light, (c) addition of 1 equiv of CF
3 2
CO H,
and (d) irradiation with visible light.
(5) (a) Asakawa, M.; Ashton, P. R.; Balzani, V.; Credi, A.; Mattersteig,
establish how (1) ultraminiaturized switches can be addressed
precisely from the macroscopic level, (2) they can elaborate such
input signals, and (3) they can transmit their response in the shape
of measurable output signals. We have designed, synthesized, and
investigated a three-state molecular switch. This relatively simple
system combines light and chemical stimuli transducing them into
optical outputs through a complex sequence of logic operations.
The spiropyran derivative SP was synthesized in three steps,
starting from 2,3,3-trimethyl-3H-indole. Light and chemical
stimulations induce the switching of SP (Figure 1) to the
merocyanine forms ME and MEH. The differences in the
absorption and emission properties of the three states can be
exploited to follow anticlockwise (Figure 2) and clockwise (Figure
3) switching cycles starting and ending with SP.
G.; Matthews, O. A.; Montalti, M.; Spencer, N.; Stoddart, J. F.; Venturi, M.
Chem. Eur. J. 1997, 3, 1992-1996. (b) Credi, A.; Balzani, V.; Langford, S.
J.; Stoddart, J. F. J. Am. Chem. Soc. 1997, 119, 2679-2681.
(6) (a) Pina, F.; Roque, A.; Melo, M. J.; Maestri, I.; Belladelli, L.; Balzani,
V. Chem. Eur. J. 1998, 4, 1184-1191. (b) Pina, F.; Maestri, M.; Balzani, V.
Chem. Commun. 1999, 107-114. (b) Roque, A.; Pina, F.; Alves, S.; Ballardini,
R.; Maestri, M.; Balzani, V. J. Mater. Chem. 1999, 9, 2265-2269. (i) Pina,
F.; Melo, M. J.; Maestri, M.; Passaniti, P.; Balzani, V. J. Am. Chem Soc.
2
000, 122, 4496-4498.
7) Bard, A. J. Integrated Chemical Systems: a Chemical Approach to
Nanotechnology; Wiley: New York, 1994.
8) (a) Metzger, R. M.; Chen, B.; Hopfner, U.; Lakshmikantham, M. V.;
(
(
Vuillaume, D.; Kawai, T.; Wu, X.; Tachibana, H.; Hughes, T. V.; Sakurai,
H.; Baldwin, J. W.; Hosch, C.; Cava, M. P.; Brehmer, L.; Ashwell, G. J. J.
Am. Chem. Soc. 1997, 119, 10455-10466. (b) Metzger, R. M. Acc. Chem.
Res. 1999, 32, 950-957. (c) Metzger, R. M. J. Mater. Chem. 1999, 9, 2027-
2
036. (d) Metzger, R. M. J. Mater. Chem. 2000, 10, 55-62.
(
9) (a) Zhou, C.; Deshpande, M. R.; Reed, M. A.; Jones, L., II; Tour, J.
The absorption spectrum of a colorless solution of SP (Figure
M. Appl. Phys. Lett. 1997, 71, 611-613. (b) Reed, M. A.; Zhou, C.; Muller,
C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252-254. (c) Chen, J.;
Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550-1552.
2a) does not show bands at wavelengths greater than 400 nm.
Upon irradiation of this solution with ultraviolet light, the colorless
(10) (a) Collier, C. P.; Wong, E. W.; Belohradsky, M.; Raymo, F. M.;
11
SP switches to the purple ME. The appearance of an absorption
Stoddart, J. F.; Kuekes, P. J.; Williams, R. S.; Heath, J. R. Science 1999,
85, 391-394. (b) Asakawa, M.; Higuchi, M.; Mattersteig, G.; Nakamura,
T.; Pease, A. R.; Raymo, F. M.; Shimizu, T.; Stoddart, J. F. AdV. Mater. 2000,
2, 1099-1102. (c) Wong, E. W.; Collier, C. P.; Belohradsky, M.; Raymo,
F. M.; Stoddart, J. F.; Heath, J. R. J. Am. Chem. Soc. 2000, 122, 5831-5840.
d) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Beverly, K.; Sampaio, J.;
Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000, 289, 1172-1175.
band at 563 nm (Figure 2b) and an emission band at 647 nm
2
accompanies this process.12 Upon addition of 1 equiv of
1
3 2
CF CO H, the purple ME switches completely to the yellow-
green MEH. Consistently, the absorption band at 563 nm and
the emission band at 647 nm disappear. An absorption band at
(
1
0.1021/ja005699n CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/24/2001