Digital Processing with a Three-State Molecular Switch
functions (AND, NOT, OR) and simple combinations of
them (EOR, Half-Adder, INH, NOR, XNOR, XOR).6-25
Conventional logic circuits are assembled connecting
the input and output terminals of multiple gates.3 The
logic operations of the individual components and the
interconnection scheme determine the logic function
executed by the entire circuit. Thus, designed logic
functions can be implemented in combinational circuits
by selecting the number, type, and configuration of the
individual operators. At the molecular level, however,
relatively complex logic functions resulting from the
combination of multiple gates can be programmed into
a single switch. It is necessary, however, to design
chemical systems that can respond to multiple inputs
producing multiple outputs. In this paper, we demon-
strate that a combinational logic function can be imple-
mented with a three-state molecular switch able to
transduce one chemical and two optical inputs into two
optical outputs. In particular, we have selected for our
studies a member of a well-known family of photochromic
switches, namely a spiropyran.2g,5b,f,26
Resu lts a n d Discu ssion
Syn th esis. The spiropyran (R/ S)-SP (Figure 1) was
synthesized in three steps starting from the commercially
available compound 2,3,3-trimethyl-3H-indole. Alkylation
of 2,3,3-trimethyl-3H-indole with 2-bromoethanol gave
the bromide salt 1 in a yield of 69%. Treatment of 1 with
KOH afforded the oxazole derivative (R/ S)-2 in a yield
of 88%. Reaction of (R/ S)-2 with 2-hydroxy-5-nitrobenz-
aldehyde gave the target molecule (R/ S)-SP in a yield
of 79%.
Nu clea r Ma gn etic Reson a n ce Sp ectr oscop y. The
chiral spirocenter of (R/ S)-SP imposes two different
environments (A and B in Table 1) on the methyl protons
Ho and Hp. Similarly, it imposes the two environments
C and D on the methylene protons Hj and Hk and the
two environments E and F on the methylene protons Hl
and Hm. As a result, two distinct singlets (1.24 and 1.14
ppm) for the methyl protons Ho/Hp and two complex
multiplets (3.72-3.47 and 3.38-3.14 ppm) for the two
pairs of methylene protons Hj/Hk and Hl/Hm are observed
in the 1H NMR spectrum (Figure 2a). The methylene
protons Hj and Hk are coupled to the adjacent hydroxy
proton Hn, which resonates as a pseudotriplet at 2.80
ppm. Consistently, the COSY spectrum (Figure S-1,
Supporting Information) shows cross-peaks between the
pseudotriplet at 2.80 ppm and the multiplet at 3.72-3.47
ppm. The methylene protons Hl and Hm are close to the
aromatic proton Hh. In fact, a positive NOE of the doublet
for this proton at 6.65 ppm (Figure 3a) is observed after
(5) (a) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P. Acc. Chem. Res.
1999, 32, 846-853. (b) Willner, I.; Katz, E. Angew. Chem., Int. Ed.
2000, 39, 1180-1218. (c) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart,
J . F. Angew. Chem., Int. Ed. 2000, 39, 3348-3391. (d) Irie, M. Chem.
Rev. 2000, 100, 1685-1716. (e) Yokoyama, Y. Chem. Rev. 2000, 100,
1717-1740. (f) Berkovic, G.; Krongauz, V.; Weiss, V. Chem. Rev. 2000,
100, 1741-1754. (g) Feringa, B. L.; van Delden, R. A.; Koumura, N.;
Geertsema, E. M. Chem. Rev. 2000, 100, 1789-1816. (h) Feringa, B.
L. Acc. Chem. Soc. 2001, 101, 504-513. (i) Diederich, F. Chem.
Commun. 2001, 219-227.
(6) (a) Ward, M. D. J . Chem. Educ. 2001, 78, 321-328. (b) de Silva,
A. P.; McClenaghan, N. D.; McCoy, C. P. In Electron Transfer in
Chemistry; Balzani, V., Ed.; Wiley-VCH: Weinheim, 2001; pp 156-
185. (c) de Silva, A. P.; McClean, G. D.; McClenaghan, N. D.; Moody,
T. S.; Weir, S. M. Nachr. Chem. 2001, 49, 602-606. (d) de Silva, A. P.;
Fox, D. B.; Moody, T. S.; Weir, S. Pure Appl. Chem. 2001, 73, 503-
511. (e) Raymo, F. M. Adv. Mater. 2002, 14, 401-414.
(7) (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. Nature
1993, 364, 42-44. (b) de Silva, A. P.; Gunaratne, H. Q. N.; Maguire,
G. E. M. J . Chem. Soc., Chem. Commun. 1994, 1213-1214. (c) de Silva,
A. P.; Gunaratne, H. Q. N.; McCoy, C. P. J . Am. Chem. Soc. 1997,
119, 7891-7892. (d) de Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J . Am. Chem. Soc.
1999, 121, 1393-1394. (e) de Silva, A. P.; McClenaghan, N. D. J . Am.
Chem. Soc. 2000, 122, 3965-3966. (f) Brown, G. J .; de Silva, A. P.;
Pagliari, S. Chem. Commun. 2002, 2461-2464. (g) de Silva, A. P.;
McClenaghan, N. D. Chem. Eur. J . 2002, 8, 4935-4945.
(8) Iwata, I.; Tanaka, K. J . Chem. Soc., Chem. Commun. 1995,
1491-1492.
(9) (a) Ghosh, P.; Bharadwaj, P. K.; Mandal, S.; Ghosh, S. J . Am.
Chem. Soc. 1996, 118, 1553-1554. (b) Ghosh, P.; Bharadwaj, P. K.;
Roy, J .; Ghosh, S. J . Am. Chem. Soc. 1997, 119, 11903-11909.
(10) Cooper, C. R.; J ames, T. D. Chem. Commun. 1997, 1419-1420.
(11) (a) Asakawa, M.; Ashton, P. R.; Balzani, V.; Credi, A.; Matter-
steig, G.; Matthews, O. A.; Montalti, M.; Spencer, N.; Stoddart, J . F.;
Venturi, M. Chem. Eur. J . 1997, 3, 1992-1996. (b) Credi, A.; Balzani,
V.; Langford, S. J .; Stoddart, J . F. J . Am. Chem. Soc. 1997, 119, 2679-
2681.
(20) Lukas, A. S.; Bushard, P. J .; Wasielewski, M. R. J . Am. Chem.
Soc. 2001, 123, 2440-2441.
(21) (a) Raymo, F. M.; Giordani, S. J . Am. Chem. Soc. 2001, 123,
4651-4652. (b) Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 1833-
1836. (c) Raymo, F. M.; Giordani, S. Org. Lett. 2001, 3, 3475-3478.
(d) Raymo, F. M.; Giordani, S. J . Am. Chem. Soc. 2002, 124, 2004-
2007. (e) Raymo, F. M.; Giordani, S. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 4941-4944.
(12) (a) Pina, F.; Roque, A.; Melo, M. J .; Maestri, I.; Belladelli, L.;
Balzani, V. Chem. Eur. J . 1998, 4, 1184-1191. (b) Pina, F.; Maestri,
M.; Balzani, V. Chem. Commun. 1999, 107-114. (c) Roque, A.; Pina,
F.; Alves, S.; Ballardini, R.; Maestri, M.; Balzani, V. J . Mater. Chem.
1999, 9, 2265-2269. (d) Pina, F.; Melo, M. J .; Maestri, M.; Passaniti,
P.; Balzani, V. J . Am. Chem Soc. 2000, 122, 4496-4498. (e) Alves, S.;
Pina, F.; Albeda, M. T.; Garc´ıa-Espan˜a, E.; Soriano, C.; Luis, S. V. Eur.
J . Inorg. Chem. 2001, 405-412.
(22) (a) Kompa, K. L.; Levine, R. D. Proc. Natl. Acad. Sci. U.S.A.
2001, 98, 410-414. (b) Witte, T.; Bucher, C.; Remacle, F.; Proch, D.;
Kompa, K. L.; Levine, R. D. Angew. Chem., Int. Ed. 2001, 40, 2512-
2514. (c) Remacle, F.; Levine, R. D. J . Chem. Phys. 2001, 114, 10239-
10246. (d) Remacle, F.; Speiser, S.; Levine, R. D. J . Phys. Chem B 2001,
105, 5589-5591. (e) Remacle, F.; Weinkauf, R.; Steinitz, D.; Kompa,
K. L.; Levine, R. D. Chem. Phys. 2002, 281, 363-372. (f) Steinitz, D.;
Remacle, F.; Levine, R. D. ChemPhysChem 2002, 43-51.
(23) de Silva, S. A.; Amorelli, B.; Isidor, D. C.; Loo, K. C.; Crooker,
K. E.; Pena, Y. E. Chem. Commun. 2002, 1360-1361.
(24) Stojanovic, M. N.; Mitchell, T. E.; Stefanovic, D. J . Am. Chem.
Soc. 2002, 124, 3555-3561.
(25) Saghatelian, A.; Vo¨lcker, N. H.; Guckian, K. M.; Lin, V. S.-Y.;
Ghadiri, M. R.. J . Am. Chem. Soc. 2003, 125, 346-347.
(26) (a) Bertelson, R. C. Photochrosmism; Brown, G. H., Ed.; Wiley:
New York, 1971; pp 45-431. (b) Guglielmetti, R. In Photochromism:
Molecules and Systems; Du¨rr, H., Bouas-Laurent, H., Eds.; Elsevier:
Amsterdam, 1990; pp 314-466. (c) Guglielmetti, R. In Photo-
chromism: Molecules and Systems; Du¨rr, H., Bouas-Laurent, H., Eds.;
Elsevier: Amsterdam, 1990; pp 855-878. (d) Willner, I.; Willner, B.
In Bioorganic Photochemistry; Morrison, H., Ed.; Wiley: New York,
1993; pp 1-110. (e) Winkler, J . D.; Deshayes, K.; Shao, B. In Bioorganic
Photochemistry; Morrison, H., Ed.; Wiley: New York, 1993; pp 169-
196. (f) Bertelson, R. C. In Organic Photochromic and Thermochromic
Compounds; Crano, J . C., Guglielmetti, R., Eds.; Plenum Press: New
York, 1999; pp 11-83.
(13) Inouye, M.; Akamatsu, K.; Nakazumi, H. J . Am. Chem. Soc.
1997, 119, 9160-9165.
(14) (a) Parker, D.; Williams, J . A. G. Chem. Commun. 1998, 245-
246. (b) Gunnlaugsson, T.; MacDo´nail, D. A.; Parker, D. Chem.
Commun. 2000, 93-94. (c) Gunnlaugsson, T.; MacDo´nail, D. A.;
Parker, D. J . Am. Chem. Soc. 2001, 123, 12866-12876.
(15) Patolsky, F.; Filanovsky, B.; Katz, E.; Willner, I. J . Phys. Chem.
B 1998, 102, 10359-10367.
(16) Kuciauskas, D.; Liddell, P. A.; Moore, A. L.; Moore, T. A.; Gust,
D. J . Am. Chem. Soc. 1998, 120, 10880-10886.
(17) (a) Gobbi, L.; Seiler, P.; Diederich, F. Angew. Chem., Int. Ed.
Engl. 1999, 38, 674-678. (b) Gobbi, L.; Seiler, P.; Diederich, F.;
Gramlich, V.; Boudon, C.; Gisselbrecht, J . P.; Gross, M. Helv. Chim.
Acta 2001, 84, 743-777.
(18) (a) J i, H. F.; Dabestani, R.; Brown, G. M. J . Am. Chem. Soc.
2000, 122, 9306-9307. (b) Xu, H.; Xu, X.; Dabestani, R.; Brown, G.
M.; Fan, L.; Patton, S.; J i, H.-F. J . Chem. Soc., Perkin Trans 2 2002,
636-643.
(19) (a) Baytekin, H. T.; Akkaya, E. U. Org. Lett. 2000, 2, 1725-
1727. (b) Turfan, B.; Akkaya, E. U. Org. Lett. 2002, 4, 2857-2859.
J . Org. Chem, Vol. 68, No. 11, 2003 4159