D. J. Wardrop, R. E. Forslund / Tetrahedron Letters 43 (2002) 737–739
739
zalez, L. M.; Alpizar, D.; Falles, M.; Budenberg, W. J.;
Ahuya, P. J. Chem. Ecol. 1997, 23, 1145–1161.
. Budenberg, W. J.; Ndiege, I. O.; Karago, F. W. J. Chem.
Ecol. 1993, 19, 1905–1916.
. Syntheses of 1: (a) Beauhaire, J.; Ducrot, P.-H.; Malosse,
C.; Ndiege, I. O.; Otieno, D. O. Tetrahedron Lett. 1995,
4
5
36, 1043–1046; (b) Ndiege, I. O.; Jarayaman, S.;
Oehlschlager, A. C.; Gonzalez, L. M.; Alpizar, D.; Falles,
M. Naturwissenschaften 1996, 83, 280–282; (c) Mori, K.;
Nakayama, T.; Takikawa, H. Tetrahedron Lett. 1996, 37,
3741–3744; (d) Fletcher, M. T.; Moore, C. J.; Kitching,
W. Tetrahedron Lett. 1997, 38, 3475–3476; (e) Nakayama,
T.; Mori, K. Liebigs Ann. 1997, 1075–1080.
6
. For reviews concerning CꢀH insertion, see: (a) Adams, J.;
Spero, D. Tetrahedron 1991, 47, 1765–1808; (b) Padwa,
A.; Austin, D. J. Angew. Chem., Int. Ed. Engl. 1994, 33,
1797–1815; (c) Taber, D. F. Methods of Organic Chem-
istry (Houben-Weyl); Helmchen, G.; Hoffmann, R. W.;
Mulzer, J.; Schaumann, E. Eds.; Georg Thieme: Stutt-
gart, 1995, Vol. E21a, pp. 1127–1148; (d) Ye, T.; McKer-
vey, A. Chem. Rev. 1994, 94, 1091–1160; (e) Sulikowski,
G. A.; Cha, K. L.; Sulikowski, M. M. Tetrahedron:
Asymmetry 1998, 9, 3145–3169.
Scheme 3. Reagents and conditions: (a) Ph PꢁCH , THF, rt,
3
2
1
6 h; (b) MeMgI, Et O, 0°C, 3 h, 98%; (c) n-BuLi, THF,
2
−
78°C, 5 min; (ii) ClCOCO Me, −78 to 0°C, 2 h, 78%; (d)
2
Bu SnH (1.5 equiv.), AIBN (1.5 equiv.), PhH, reflux, 16 h,
3
5
0%; (e) p-TsOH, CH Cl (Ref. 5e).
2 2
n-BuLi and methyl oxalyl chloride gave 12 which, after
purification, was heated with Bu SnH and AIBN in
3
benzene for 16 h. The reaction mixture was then con-
centrated by distillation (1 atm) and the residue purified
7
. Diol 2 was separated from a commericially available
mixture of cis- and trans-2,4-pentanediol: Pritchard, J.
G.; Vollmer, R. L. J. Org. Chem. 1964, 28, 1545–1549.
. Ziegler, T. Top. Curr. Chem. 1997, 186, 203–229.
. Nader, F. W.; Elliel, E. L. J. Am. Chem. Soc. 1970, 92,
by radial chromatography (pentane/Et O, SiO ) to
2
2
provide (±)-7-episordidin (1b) as the sole reduction
8
9
1
5
product. The moderate yield of this final transforma-
tion is primarily a reflection of the volatility of 1b
which leads to significant losses during isolation. A
comparison of the spectral and physical properties of
3050–3055.
1
1
0. Anelli, P. L.; Brocchetta, M.; Palano, D.; Visigalli, M.
Tetrahedron Lett. 1997, 38, 2367–2368.
1. (a) Hashimoto, S.; Watanbe, N.; Sato, T.; Shiro, M.;
Ikegami, S. Tetrahedron Lett. 1993, 34, 5109–5112; (b)
Taber, D. F.; Malcolm, S. C. J. Org. Chem. 2001, 66,
1
13
our material (MS, IR and H and C NMR) with those
5
e
reported by Mori indicated a close match.
In summary, we report the first stereoselective synthesis
of 7-episordidin (1b), which is accomplished in nine
steps starting from cis-2,4-pentanediol (2), with an
overall yield of 18%. Since the conversion of (±)-7-
episordidin (1b) to sordidin (1a) has previously been
9
44–953; (c) Davies, H. M. L.; Bruzinki, P. R.; Lake, D.
H.; Kong, N.; Fall, M. J. J. Am. Chem. Soc. 1996, 118,
897–6907; (d) Doyle, M. P.; Winchester, W. R.; Hoorn,
6
J. A. A.; Lynch, V.; Simonsen, S. H.; Ghosh, R. J. J.
Am.. Chem. Soc. 1993, 115, 9968–9978.
5
e
described by Mori, the work reported here also repre-
1
1
2. (a) Doyle, M. P.; Dyatkin, A. B.; Autry, C. L. J. Chem.
Soc., Perkin Trans. 1 1995, 619–621; (b) Clark, J. S.;
Dossetter, A. G.; Russel, C. A.; Whittingham, W. G. J.
Org. Chem. 1997, 62, 4910–4911; (c) White, J. D.; Hrn-
ciar, P. J. Org. Chem. 1999, 64, 7223–7271.
sents a formal synthesis of sordidin (1a).
Acknowledgements
3. Walker, L. F.; Connolly, S.; Wills, M. Tetrahedron Lett.
1
998, 39, 5273–5276.
We thank the National Institutes of Health (GM59157-
14. Dolan, S. C.; MacMillan, J. J. Chem. Soc., Chem. Com-
0
5
1), the National Science Foundation (NSF-DUE-98-
62167), and the University of Illinois at Chicago for
mun. 1985, 1588–1589.
15. 7-Episordidin (1b): IR wmax (film) 2961, 2931, 2887, 1475,
−
1 1
financial support.
1375, 1195, 1163, 1094, 992 cm ; H NMR (500 MHz,
CDCl ) l 4.10–4.05 (m, 1 H), 2.25–2.22 (m, 1 H), 1.99 (t,
3
J=12.5 Hz, 1 H), 1.75–1.62 (m, 1 H), 1.57–1.49 (m, 1 H),
1.49–1.41 (m, 2 H), 1.40–1.37 (m, 1 H), 1.32 (s, 3 H), 1.79
References
. Ho, T.-S. Symmetry: A Basis for Synthesis Design; Wiley-
(
d, J=7.2 Hz, 3 H), 1.18 (d, J=6.1 Hz, 3 H), 0.93 (t,
13
1
2
3
J=7.5 Hz, 3 H); C NMR (125 MHz, CDCl ) l 107.6,
3
Interscience: New York, 1995.
. Wardrop, D. J.; Velter, I. A.; Forslund, R. E. Org. Lett.
78.7, 65.6, 44.6, 42.4, 40.6, 29.1, 26.5, 22.2, 12.7, 7.9;
GCMS (EI, 70 eV) m/z 51, 57, 67, 83, 95, 100, 113, 142,
169 184. High resolution mass spectrum (CI) m/z
2
001, 3, 2261–2264.
+
. Jayaraman, S.; Ndiege, I. O.; Oehlschlager, A. C.; Gon-
185.1545 [(M+H) ; calcd for C H O 185.1542].
11
21
2