18 of 19
KANDATHIL ET AL.
(
Rs) was found to be 5.37 Ω and the interfacial transfer
REFERENCES
resistance (R ) value was 28.039 Ω. The image in the
inset of Figure 11d shows an equivalent circuit to stimu-
[1] C. Coperet, M. Chabanas, R. Petroff Saint-Arroman,
ct
J. M. Basset, Angew. Chem. Int. Ed. Engl. 2003, 42, 156.
[
2] A. L. Noffke, A. Habtemariam, A. M. Pizarro, P. J. Sadler,
Chem. Commun. 2012, 48, 5219.
3] a)R. H. Crabtree, J. Organomet. Chem. 2005, 690, 5451. b)
S. Kaufhold, L. Petermann, R. Staehle, S. Rau, Coord. Chem.
Rev. 2015, 304-305, 73.
late the experimental results.
The stability of a material provides important infor-
mation about its robustness towards electrochemical per-
formance. The cyclic stability of GO@NHC-Pd was found
to be 96.89% over 2,500 cycles. The inset image of
Figure 11c shows the percentage of capacitance retention
over 2,500 cycles. From the results obtained it can be con-
firmed that GO@NHC-Pd has a long lifespan as no deg-
radation was observed even after 2,500 consecutive
charge–discharge cycles.
[
[
4] a)M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature
2014, 510, 485. b)T. Baran, N. Yılmaz Baran, A. Mente s¸ , J. Mol.
Struct. 2018, 1160, 154.
[5] a)J. K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn,
L. B. Hansen, M. Bollinger, H. Bengaard, B. Hammer,
Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl,
C. J. H. Jacobsen, J. Catal. 2002, 209, 275. b)
M. Nasrollahzadeh, M. Sajjadi, R. S. Varma, Celean Technol.
Envir 2019, 22, 423. c)N. Yılmaz Baran, T. Baran, A. Mente s¸ ,
Appl. Clay Sci. 2019, 181, 105225.
4
| CONCLUSION
[
6] a)R. Sengupta, M. Bhattacharya, S. Bandyopadhyay,
A. K. Bhowmick, Prog. Polym. Sci. 2011, 36, 638. b)B. Coq,
J. Marc Planeix, V. Brotons, Appl. Catal. A 1998, 173, 175.
7] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts,
R. S. Ruoff, Adv. Mater. 2010, 22, 3906.
The new GO@NHC-Pd catalyst was successfully synthe-
sized and characterized using various spectroscopic and
microscopic techniques, such as FT-IR spectroscopy,
TGA, BET, TEM, FESEM, EDS, ICP-OES, and XRD ana-
lyses. The heterogeneous GO@NHC-Pd catalyst could
catalyze Suzuki–Miyaura and Hiyama cross-coupling
reactions very effectively to give good to excellent yields
of biaryls. The ease of synthesis, use of cheap reactants,
greener reaction conditions, easy recovery, and high recy-
clability of the GO@NHC-Pd catalyst makes it an eco-
friendly and economically viable catalyst system.
Furthermore, GO@NHC-Pd can also be studied for its
catalytic activity in different cross-coupling reactions.
Also, from electrochemical measurements the highest
specific capacitance was evaluated to be 105.26 F/g at
[
[
8] a)A. Kaniyoor, T. T. Baby, S. Ramaprabhu, J. Mater. Chem.
2
010, 20, 8467. b)M. Nasrollahzadeh, Z. Issaabadi,
M. M. Tohidi, S. Mohammad Sajadi, Chem. Rec. 2018, 18, 165.
9] a)I. Hussain, J. Capricho, M. A. Yawer, Adv. Synth. Catal.
2016, 358, 3320. b)S. D. Walker, T. E. Barder, J. R. Martinelli,
S. L. Buchwald, Angew. Chem. Int. Ed. Engl. 2004, 43, 1871. c)
N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun. 2006, 11,
[
513. d)T. Baran, J. Colloid Interface Sci. 2017, 496, 446.
[
10] a)S. Kotha, K. Lahiri, D. Kashinath, Tetrahedron 2002, 58,
9
6
1
633. b)A. N. Cammidge, K. V. Crepy, J. Org. Chem. 2003, 68,
832. c)N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett.
979, 20, 3437. d)C. Singh, K. Jawade, P. Sharma, A. P. Singh,
P. Kumar, Cat. Com. 2015, 69, 11.
0
2
.1 A/g with an excellent cycling stability of 96.89% over
,500 cycles, which demonstrates the long lifespan of the
[11] a)A. J. Lennox, G. C. Lloyd-Jones, Chem. Soc. Rev. 2014, 43,
412. b)J. P. Knowles, A. Whiting, Org. Biomol. Chem. 2007, 5,
31. c)T. Baran, N. Yılmaz Baran, A. Mente s¸ , Appl. Organomet.
material. The contribution of GO provides better super-
capacitive performance, overcoming the relatively lower
surface area of the complex. Compared to previous litera-
ture the experimental findings are quite enhanced and
proved to be a good material for supercapacitor.
Chem. 2017, 32, e4075. d)J. Chen, J. Zhang, Y. Zhang, M. Xie,
T. Li, Appl. Organomet. Chem. 2019, 34, e5310. e)Y. Lei,
W. Zhu, Y. Wan, R. Wang, H. Liu, Appl. Organomet. Chem.
2019, 34, e5364.
[12] Y. Nakao, T. Hiyama, Chem. Soc. Rev. 2011, 40, 4893.
[
13] G. Buscemi, M. Basato, A. Biffis, A. Gennaro, A. A. Isse,
M. M. Natile, C. Tubaro, J. Organomet. Chem. 2010, 695, 2359.
14] H. M. Peng, R. D. Webster, X. Li, Organometallics 2008, 27,
ACKNOWLEDGMENTS
[
[
The authors thank DST-SERB, India (YSS/2015/000010),
DST-Nanomission, India (SR/NM/NS-20/2014), and Jain
University, India for financial support.
4484.
15] M. Akkoç, E. Öz, S. Demirel, V. Dorcet, T. Roisnel, A. Bayri,
_
C. Bruneau, S. Altin, S. Ya s¸ ar, I. Özdemir, J. Organomet. Chem.
2
018, 866, 214.
DISCLOSURE OF INTEREST
The authors declare that they have no conflict of interests
concerning this article.
[
16] a)V. Kandathil, B. D. Fahlman, B. S. Sasidhar, S. A. Patil,
S. A. Patil, New J. Chem. 2017, 41, 9531. b)K. Vishal,
B. D. Fahlman, B. S. Sasidhar, S. A. Patil, S. A. Patil, Catal.
Lett. 2017, 147, 900. c)V. Kandathil, T. S. Koley,
K. Manjunatha, R. B. Dateer, R. S. Keri, B. S. Sasidhar,
S. A. Patil, S. A. Patil, Inorg. Chim. Acta 2018, 478, 195. d)
K. Manjunatha, T. S. Koley, V. Kandathil, R. B. Dateer,
G. Balakrishna, B. S. Sasidhar, S. A. Patil, S. A. Patil, Appl.
ORCID