5
8
H.-M. Shen, H.-B. Ji / Carbohydrate Research 354 (2012) 49–58
4. Uekama, K.; Hirayama, F.; Irie, T. Chem. Rev. 1998, 98, 2045–2076.
positive Z axis. The coordinate of the guest molecule thioanisole
was determined with the aid of three dummy atoms, one in the
Z axis and two in the XY plane. The relative position between the
modified b-CDs and thioanisole was determined by the distance,
angle and dihedral angle between the labeled carbon atom in thio-
anisole and the three dummy atoms. To facilitate the calculation,
the carbon atom linking to the sulfur atom in the benzene ring of
thioanisole was appointed to be the labeled carbon atom. All the
inclusion complexes were firstly optimized at the level of PM3,
and then the output files were employed as input files for optimi-
zation at the level of ONIOM(B3LYP/6-31G(d):PM3) to obtain opti-
mized energies.
5
6
.
.
Takahashi, K. Chem. Rev. 1998, 98, 2013–2033.
Barr, L.; Dumanski, P. G.; Easton, C. J.; Harper, J. B.; Lee, K.; Lincoln, S. F.; Meyer,
A. G.; Simpson, J. S. J. Inclusion Phenom. Macro. 2004, 50, 19–24.
7. Breslow, R.; Steven, D. D. Chem. Rev. 1998, 98, 1997–2011.
8
9
.
.
Reetz, M. T. Top. Catal. 1997, 4, 187–200.
Hapiot, F.; Tilloy, S.; Monflier, E. Chem. Rev. 2006, 106, 767–781.
1
1
1
0. Vizvardi, K.; Desmet, K.; Luyten, I.; Sandra, P.; Hoornaert, G.; Van der Eycken, E.
Org. Lett. 2001, 3, 1173–1175.
1. da Silva, W. A.; Rodrigues, M. T.; Shankaraiah, N.; Ferreira, R. B.; Andrade, C. K.
Z.; Pilli, R. A.; Santos, L. S. Org. Lett. 2009, 11, 3238–3241.
2. Engeldinger, E.; Armspach, D.; Matt, D. Chem. Rev. 2003, 103, 4147–4173.
13. Bjerre, J.; Rousseau, C.; Marinescu, L.; Bols, M. Appl. Microbiol. Biotechnol. 2008,
1, 1–11.
8
14. Bellia, F.; La Mendola, D.; Pedone, C.; Rizzarelli, E.; Saviano, M.; Vecchio, G.
Chem. Soc. Rev. 2009, 38, 2756–2781.
1
1
5. Barr, L.; Lincoln, S. F.; Easton, C. J. Chem. Eur. J. 2006, 12, 8571–8580.
6. Breslow, R.; Zhang, X.; Xu, R.; Maletic, M.; Merger, R. J. Am. Chem. Soc. 1996,
4
. Conclusion
1
18, 11678–11679.
17. Breslow, R.; Zhang, X.; Huang, Y. J. Am. Chem. Soc. 1997, 119, 4535–4536.
In summary, seven amino alcohol-modified b-CDs have been
18. Yang, J.; Breslow, R. Angew. Chem., Int. Ed. 2000, 39, 2692–2694.
19. Breslow, R.; Yan, J. M.; Belvedere, S. Tetrahedron Lett. 2002, 43, 363–365.
20. Breslow, R.; Yang, J.; Yan, J. M. Tetrahedron 2002, 58, 653–659.
21. Yang, J.; Gabriele, B.; Belvedere, S.; Huang, Y.; Breslow, R. J. Org. Chem. 2002, 67,
5057–5067.
synthesized in acceptable yields (36–61%), and their complexes
with sodium molybdate were prepared in situ in aqueous CH COO-
3
Na–HCl buffer solution at room temperature. Their performance to
induce enantioselectivity was investigated with the asymmetric
oxidation of thioanisole as model reaction, and moderate ee value
22. French, R. R.; Holzer, P.; Leuenberger, M. G.; Woggon, W. D. Angew. Chem., Int.
Ed. 2000, 39, 1267–1269.
23. French, R. R.; Holzer, P.; Leuenberger, M.; Nold, M. C.; Woggon, W. D. J. Inorg.
Biochem. 2002, 88, 295–304.
(
56%) was achieved for the optimal ligand CD-1. The moderate
24. Breslow, R.; Zhang, B. J. Am. Chem. Soc. 1992, 114, 5882–5883.
25. Zhang, B.; Breslow, R. J. Am. Chem. Soc. 1997, 119, 1676–1681.
26. Sallas, F.; Marsura, A.; Petot, V.; Pinter, I.; Kovacs, J.; Jicsinszky, L. Helv. Chim.
Acta 1998, 81, 632–645.
enantioselectivity can be ascribed to the two different binding
models of CD-1 with thioanisole, which can be defined as intramo-
lecular catalysis and intermolecular catalysis, and intramolecular
catalysis gave (S)-methyl phenyl sulfoxide and intermolecular
catalysis gave (R,S)-methyl phenyl sulfoxide. The delicate coopera-
tion between the modifying groups and the parent b-CD plays a
decisive role in inducing enantioselectivity in these modified b-
CDs. To our best knowledge, this work provides an example to ap-
ply amino alcohol-modified b-CDs in the asymmetric oxidation of
thioanisole and systematically investigate the effect of the reaction
27. Zhou, Y. H.; Zhao, M.; Mao, Z. W.; Ji, L. N. Chem. Eur. J. 2008, 14, 7193–7201.
2
8. Tang, S. P.; Zhou, Y. H.; Chen, H. Y.; Zhao, C. Y.; Mao, Z. W.; Ji, L. N. Chem. Asian J.
009, 4, 1354–1360.
2
29. Bonchio, M.; Carofiglio, T.; Di Furia, F.; Fornasier, R. J. Org. Chem. 1995, 60,
5986–5988.
30. Sakuraba, H.; Maekawa, H. J. Inclusion Phenom. Macro. 2006, 54, 41–45.
31. Wong, Y. T.; Yang, C.; Ying, K. C.; Jia, G. C. Organometallics 2002, 21, 1782–1787.
32. Schlatter, A.; Kundu, M. K.; Woggon, W. D. Angew. Chem., Int. Ed. 2004, 43,
6731–6734.
0
0
33. Schlatter, A.; Woggon, W. D. Adv. Synth. Catal. 2008, 350, 995–1000.
medium s pH value and the modifying group s structure on the
enantioselectivity, providing a promising model in the design of
artificial metalloenzymes based on b-CD. It also provides a method
to employ quantum calculation to illustrate the enantioselectivity
in the asymmetric oxidation of thioanisole catalyzed by b-CD
derivatives, providing a good access to illustrate the origin of the
enantioselectivity in the asymmetric organic reaction. To further
investigate the origin of the enantioselectivity in this intriguing
catalytic system, the synthesis of new b-CD derivative and its
application in the asymmetric oxidation of thioanisole are in
process.
34. Ji, H. B. Eur. J. Org. Chem. 2003, 3659–3662.
35. Ji, H. B.; Shi, D. P.; Shao, M.; Li, Z.; Wang, L. F. Tetrahedron Lett. 2005, 46, 2517–
2520.
3
3
6. Chen, H. Y.; Ji, H. B. AIChE J. 2010, 56, 466–476.
7. Petter, R. C.; Salek, J. S.; Sikorski, C. T.; Kumaravel, G.; Lin, F. T. J. Am. Chem. Soc.
1990, 112, 3860–3868.
38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao,
O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A.
J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G.
A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.;
Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.;
Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
GAUSSIAN 03, Revision D.01; Gaussian, Inc.: Wallingford CT, 2004.
Acknowledgements
The authors thank the National Natural Science Foundation of
China (Nos. 21036009 and 21176268), higher-level talent project
for Guangdong provincial universities and the Fundamental Re-
search Funds for the Central Universities for providing financial
support to this project.
39. Gaidamauskas, E.; Norkus, E.; Butkus, E.; Crans, D. C.; Grinciene, G. Carbohydr.
Res. 2009, 344, 250–254.
40. Hu, S. S.; Li, J. Y.; Xiang, J. F.; Pan, J.; Luo, S. Z.; Cheng, J. P. J. Am. Chem. Soc. 2010,
32, 7216–7228.
1
4
1. Yan, C. L.; Xiu, Z. L.; Li, X. H.; Teng, H.; Hao, C. J. Inclusion Phenom. Macro. 2007,
58, 337–344.
2. Francis, A.; Carey, R. J. S. Advanced Organic Chemistry Part A: Structure and
Mechanisms; Science Press: Beijing, 2009.
Supplementary data
4
4
4
3. Sahoo, S.; Kumar, P.; Lefebvre, F.; Halligudi, S. B. J. Catal. 2009, 262, 111–118.
4. Betzel, C.; Saenger, W.; Hingerty, B. E.; Brown, G. M. J. Am. Chem. Soc. 1984, 106,
7545–7557.
45. Yang, E. C.; Zhao, X. J.; Hua, F.; Hao, J. K. J. Mol. Struct. Theochem. 2004, 712, 75–
7
9.
6. Cao, Y. J.; Xiao, X. H.; Ji, S. F.; Lu, R. H.; Guo, Q. X. Spectrochim. Acta A 2004, 60,
15–820.
47. Cao, Y. J.; Lu, R. H. Spectrochim. Acta A 2009, 73, 713–718.
48. Yahia, O. A.; Khatmi, D. E. J. Mol. Struct. Theochem. 2009, 912, 38–43.
References
4
8
1.
2.
3.
Szejtli, J. Chem. Rev. 1998, 98, 1743–1753.
Villalonga, R.; Cao, R.; Fragoso, A. Chem. Rev. 2007, 107, 3088–3116.
Sallas, F.; Darcy, R. Eur. J. Org. Chem. 2008, 957–969.