the time-resolved luminescence microscopy imaging of 1O2 in
biological systems using the new probe would be a favorably useful
technique for visualizing the temporal and spatial distribution of
1O2 in biological samples.
Notes and references
1 P. Kang and C. S. Foote, J. Am. Chem. Soc., 2002, 124, 4865;
J. R. Wagner, P. A. Motchnik, R. Stocker, H. Sies and B. N. Ames,
J. Biol. Chem., 1993, 268, 18502; J. Piette, J. Photochem. Photobiol. B:
Biol., 1991, 11, 241; J. Cadet, T. Douki, J. P. Pouget and J. L. Ravanat,
Methods Enzymol., 2000, 319, 143; B. Epe, M. Pflaum and S. Boituex,
Mutat. Res., 1993, 299, 135; C. Sheu and C. S. Foote, J. Am. Chem.
Soc., 1995, 117, 474.
2 L. O. Klotz, K. Briviba and H. Sies, Methods Enzymol., 2000, 319, 130;
S. W. Ryster and R. M. Tyrrell, Free Radical Biol. Med., 1998, 24, 1520;
S. Basu-Modak and R. M. Tyrrell, Cancer Res., 1993, 53, 4505.
3 H. Barry and M. C. John, Free Radicals in Biology and Medicine,
Clarendon Press, Oxford, 1982; B. D. Goldstein and L. C. Harber,
J. Clin. Invest., 1972, 51, 892.
4 A. A. Krasnovsky, Jr., Biol. Membr., 1998, 15, 530; T. Keszthelyi,
D. Weldon, T. N. Andersen, T. D. Poulsen, K. V. Mikkelsen and
P. R. Ogilby, Photochem. Photobiol., 1999, 70, 531; L. K. Andersen,
Z. Cao, P. R. Ogilby, L. Poulsen and I. Zebger, J. Phys. Chem. A, 2002,
106, 8488; C. Schweitzer and R. Schmidt, Chem. Rev., 2003, 103,
1685.
5 E. J. Corey and W. C. Taylor, J. Am. Chem. Soc., 1964, 86, 3881;
H. H. Wasserman, J. R. Scheffer and J. L. Cooper, J. Am. Chem. Soc.,
1972, 94, 4991; N. J. Turro, M. F. Chow and J. Rigaudy, J. Am. Chem.
Soc., 1981, 103, 7218; M. J. Steinbeck, A. U. Khan and
M. J. Karnovsky, J. Biol. Chem., 1992, 267, 13425; M. J. Steinbeck,
A. U. Khan and M. J. Karnovsky, J. Biol. Chem., 1993, 268, 15649.
6 N. Umezawa, K. Tanaka, Y. Urano, K. Kikuchi, T. Higuchi and
T. Nagano, Angew. Chem. Int. Ed., 1999, 38, 2899; K. Tanaka, T. Miura,
N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi and T. Nagano,
J. Am. Chem. Soc., 2001, 123, 2530.
7 X. H. Li, G. X. Zhang, H. M. Ma, D. Q. Zhang, J. Li and D. B. Zhu,
J. Am. Chem. Soc., 2004, 126, 11543.
8 I. Hemmila¨ and V.-M. Mukkala, Crit. Rev. Clin. Lab. Sci., 2001, 38,
441.
9 K. Matsumoto and J. Yuan, in Metal Ions in Biological Systems, (Eds.:
A. Sigel, H. Sigel), Marcel Dekker, Inc., New York and Basel, 2003, 40,
191.
10 J. M. Aubry and B. Cazin, Inorg. Chem., 1988, 27, 2013; J. M. Aubry,
B. Cazin and F. Duprat, J. Org. Chem., 1989, 54, 726.
11 M. H. V. Werts, J. W. Verhoeven and J. W. Hofstraat, J. Chem. Soc.,
Perkin Trans. 2, 2000, 433.
Fig. 2 Calibration curve for 1O2. The curve was derived from the
luminescence intensity of the H2O2/MoO422/ATTA-Eu3+ reaction in 0.1 M
carbonate buffer of pH 10.5 with 100 nM of ATTA-Eu3+, 10 mM of
Na2MoO4 and a series of standard H2O2 solutions.
several discrete points between 580 and 710 nm. The significant
increase of phosphorescence signal of the probe was also observed
1
by using the photosensitization of rhodamine B as a O2 source19
in a 0.05 M Tris-HCl buffer of pH 7.4. When azide, a quencher of
1O2,20 was added to MoO422/H2O2/ATTA-Eu3+ system, the
change of the probe’s phosphorescence intensity can not be
observed. These results distinctly indicate that the increase of
phosphorescence intensity is caused by the reaction of the probe
1
with O2.
1
Because of quantitative generation of O2 from MoO422/H2O2
system (one 1O2 molecule can be formed quantitatively by the
reaction of two H2O2 molecules),10 this system was used for the
quantitative detection of 1O2. As shown in Fig. 2, the dose-
dependence of phosphorescence intensity of the probe on 1O2
concentration shows a good linearity. The detection limit for 1O2,
calculated as the concentration corresponding to three standard
deviations of the background signal, is 2.8 nM, which is y28 times
lower than that of the chemiluminescence method.7
The reactions of ATTA-Eu3+ with different reactive oxygen
12 A. Beeby, I. M. Clarkson, R. S. Dickins, S. Faulkner, D. Parker,
L. Royle, A. S. de Sousa, J. A. G. Williams and M. Woods, J. Chem.
Soc., Perkin Trans. 2, 1999, 493.
species (H2O2, OH, O22, and O2) were investigated to examine
1
?
its selectivity. In the same buffer, the phosphorescence intensities
of 100 nM ATTA-Eu3+ upon reactions with 10 mM H2O2,
13 O. S. Wolfbeis, A. Du¨rkpo, M. Wu and Z. Lin, Angew. Chem. Int. Ed.,
2002, 41, 4495.
14 M. H. V. Werts, R. T. F. Jukes and J. W. Verhoeven, Phys. Chem.
Chem. Phys., 2002, 4, 1542.
15 M. Latva, H. Takallo, V. M. Mukkala, C. Matachescu, J. C. R. Ubis
and J. Kankare, J. Lumin., 1997, 75, 149.
16 G. Ofelt, J. Chem. Phys., 1963, 38, 2171.
17 G. Albano, V. Balzani, E. C. Constable, M. Maestri and D. R. Smith,
Inorg. Chim. Acta, 1998, 277, 225.
18 G. J. Wilson, A. Launikonis, W. H. F. Sasse and A. W. H. Mau,
J. Phys. Chem. A, 1997, 101, 4860.
19 K. Gollnick, T. Franken and M. F. R. Fouda, Tetrahedron Lett., 1981,
22, 4049.
20 J. R. Harbour and S. L. Issler, J. Am. Chem. Soc., 1982, 104, 903.
21 H. T. Zhao, S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom,
J. Vasquez-Vivar and B. Kalyanaraman, Free Radical Biol. Med., 2003,
34, 1359.
7
?
10 mM H2O2 + 10 mM ferrous ammonium sulfate ( OH), 10 mM
2 21
KO2 (O2
)
and 10 mM H2O2 + 10 mM Na2MoO4 (1O2) were
increased 46%, 76%, 6% and 1246%, respectively. These results
indicate that the probe ATTA-Eu3+ is highly specific for O2.
1
In summary, the first Eu3+ chelate-based phosphorescence probe
1
specific for time-resolved luminescence detection of O2 has been
designed, synthesized and characterized. The photophysical
characterization and the mechanism of the phosphorescence of
the probe were discussed. The properties of high sensitivity,
selectivity and water solubility of the new probe for 1O2 detection
suggest that the probe should be widely useful for the luminescence
detection of 1O2 in many chemical and biological systems. Perhaps,
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 3553–3555 | 3555