Theranostics 2019, Vol. 9, Issue 22
6549
bradykinin-potentiating
Biomaterials. 2014; 35: 6439-53.
2. Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al.
Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours
depends on size. Nat Nanotechnol. 2011; 6: 815-23.
peptide-decorated
chitosan
nanoparticles.
51. Zhang K, Chew M, Yang EB, Wong KP, Mack P. Modulation of cisplatin
cytotoxicity and cisplatin-induced DNA cross-links in HepG2 cells by
regulation of glutathione-related mechanisms. Mol Pharmacol. 2001; 59:
837-43.
52. Zhang A, Zhang Z, Shi F, Xiao C, Ding J, Zhuang X, et al. Redox-sensitive
shell-crosslinked polypeptide-block-polysaccharide micelles for efficient
intracellular anticancer drug delivery. Macromol Biosci. 2013; 13: 1249-58.
53. Khan M, Li T, Ahmad Khan MK, Rasul A, Nawaz F, Sun M, et al.
Alantolactone Induces Apoptosis in HepG2 Cells through GSH Depletion,
Inhibition of STAT3 Activation, and Mitochondrial Dysfunction. Biomed Res
Int. 2013; 2013: 1-11.
2
2
2
3. Wang J, Byrne JD, Napier ME, DeSimone JM. More effective nanomedicines
through particle design. Small. 2011; 7: 1919-31.
4. Lee HJ, Pardridge WM. Monoclonal antibody radiopharmaceuticals:
cationization, pegylation, radiometal chelation, pharmacokinetics, and tumor
imaging. Bioconjug Chem. 2003; 14: 546-53.
5. Zhou Z, Shen Y, Tang J, Fan M, Van Kirk EA, Murdoch WJ, et al.
Charge-Reversal Drug Conjugate for Targeted Cancer Cell Nuclear Drug
Delivery. Adv Funct Mater. 2009; 19: 3580-9.
2
54. Honda T, Coppola S, Ghibelli L, Cho SH, Kagawa S, Spurgers KB, et al. GSH
depletion enhances adenoviral bax-induced apoptosis in lung cancer cells.
Cancer Gene Ther. 2004; 11: 249-55.
2
2
6. Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell
Biochem Funct. 2004; 22: 343-52.
55. McGary CT, Yannariello-Brown J, Kim DW, Stinson TC, Weigel PH.
Degradation and intracellular accumulation of a residualizing hyaluronan
derivative by liver endothelial cells. Hepatology. 1993; 18: 1465-76.
7. Ishikura T, Senou T, Ishihara H, Kato T, Ito T. Drug delivery to the brain.
DOPA prodrugs based on a ring-closure reaction to quaternary thiazolium
compounds. Int J Pharm. 1995; 116: 51-63.
56. Schutte
K,
Bornschein
J,
Malfertheiner
P.
Hepatocellular
2
2
3
8. Lonsdale D. Thiamine tetrahydrofurfuryl disulfide: a little known therapeutic
carcinoma--epidemiological trends and risk factors. Dig Dis. 2009; 27: 80-92.
57. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA
Cancer J Clin. 2009; 59: 225-49.
58. Daniele B, Bencivenga A, Megna AS, Tinessa V. Alpha-fetoprotein and
ultrasonography screening for hepatocellular carcinoma. Gastroenterology.
2004; 127: S108.
59. Zhang N, Gu J, Yin L, Wu J, Du MY, Ding K, et al. Incorporation of
alpha-fetoprotein (AFP) into subclassification of BCLC C stage hepatocellular
carcinoma according to a 5-year survival analysis based on the SEER database.
Oncotarget. 2016; 7: 81389-401.
60. Ji X, Shen Y, Sun H, Gao X. A novel anti-alpha-fetoprotein single-chain
variable fragment displays anti-tumor effects in HepG2 cells as a single agent
or in combination with paclitaxel. Tumour Biol. 2016; 37: 10085-96.
61. Zhang Y, Chen SW, Liu LL, Yang X, Cai SH, Yun JP. A model combining TNM
stage and tumor size shows utility in predicting recurrence among patients
with hepatocellular carcinoma after resection. Cancer Manag Res. 2018; 10:
3707-15.
agent. Med Sci Monit. 2004; 10: A199-203.
9. Mitoma C. Metabolic disposition of thiamine tetrahydrofurfuryl disulfide in
dog and man. Drug Metab Dispos. 1973; 1: 698-703.
0. Fan W, Wu Y, Li X, Yao N, Li X, Yu Y, et al. Design, synthesis and biological
evaluation of brain-specific glucosyl thiamine disulfide prodrugs of naproxen.
Eur J Med Chem. 2011; 46: 3651-61.
1. Xiao D, Meng F, Dai W, Yong Z, Liu J, Zhou X, et al. Design, Synthesis and
Biological Evaluation of Brain-Targeted Thiamine Disulfide Prodrugs of
Ampakine Compound LCX001. Molecules. 2016; 21: 488.
2. Utsumi I, Kohno K, Kakie Y, Mizobe M. Studies on thiamine disulfide (XXIX)
Exchange reaction of disulfide type thiamine derivatives with blood-SH
groups, especially glutathione and hemoglobin. Vitamins. 1968; 37: 264-75.
3. Takenouchi K, Aso K, Kobayashi T. Absorption and excretion of thiamine
propyl disulfide-S35 II Absorption of thiamine propyl disulfide-S35. Vitamins.
3
3
3
3
1962; 26: 245-50.
4. Zhao Y, Zhang L, Peng Y, Yue Q, Hai L, Guo L, et al. GLUT1-mediated
venlafaxine-thiamine disulfide system-glucose conjugates with “lock-in”
function for central nervous system delivery. Chem Biol Drug Des. 2018; 91:
62. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell.
2011; 144: 646-74.
7
07-16.
63. Hernández-Camarero P, Jiménez G, López-Ruiz E, Barungi S, Marchal JA,
Perán M. Revisiting the dynamic cancer stem cell model: Importance of
tumour edges. Crit Rev Oncol Hematol. 2018; 131: 35-45.
64. Yen YH, Changchien CS, Wang JH, Kee KM, Hung CH, Hu TH, et al. A
modified TNM-based Japan Integrated Score combined with AFP level may
serve as a better staging system for early-stage predominant hepatocellular
carcinoma patients. Dig Liver Dis. 2009; 41: 431-41.
65. Liu F, Han L, Huang X, Sang M, Liu B, Li C, et al. Reticuloendothelial System
Pre-Block Strategy to Improve Tumor Targeting Efficacy for Hyaluronic Acid
Related Drug Delivery System. J Biomed Nanotechnol. 2018; 14: 1731-43.
3
3
5. Han L, Hu L, Liu F, Wang X, Huang X, Liu B, et al. Redox-sensitive micelles
for targeted intracellular delivery and combination chemotherapy of paclitaxel
and all-trans-retinoid acid. Asian Journal of Pharmaceutical Sciences. DOI:
10.1016/j.ajps.2018.08.009.
6. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug
delivery to solid tumors: Improvement of tumor uptake, lowering of systemic
toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013; 65:
7
1-9.
3
3
3
7. Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and
nucleic acid delivery. Adv Drug Deliv Rev. 2016; 97: 204-36.
8. Tammam SN, Azzazy HME, Lamprecht A. How successful is nuclear
targeting by nanocarriers? J Control Release. 2016; 229: 140-53.
9. Qin Y, Meng L, Hu C, Duan W, Zuo Z, Lin L, et al. Gambogic acid inhibits the
catalytic activity of human topoisomerase IIalpha by binding to its ATPase
domain. Mol Cancer Ther. 2007; 6: 2429-40.
4
0. Yu J, Guo QL, You QD, Zhao L, Gu HY, Yang Y, et al. Gambogic acid-induced
G2/M phase cell-cycle arrest via disturbing CDK7-mediated phosphorylation
of CDC2/p34 in human gastric carcinoma BGC-823 cells. Carcinogenesis.
2007; 28: 632-8.
4
4
1. Zhao Q, Yang Y, Yu J, You QD, Zeng S, Gu HY, et al. Posttranscriptional
regulation of the telomerase hTERT by gambogic acid in human gastric
carcinoma 823 cells. Cancer Lett. 2008; 262: 223-31.
2. Frederick LGMD, David LPMD, Irvin DFMD, April G. Fritz C. T. R. RHIT,
Charles MBMD, Daniel GHMD, et al. AJCC Cancer Staging Manual. Seventh
edition. USA: Springer; 2010.
4
4
3. Hayes DF. Precision Medicine and Testing for Tumor Biomarkers-Are All
Tests Born Equal? JAMA Oncol. 2018; 4: 773-4.
4. Jin R, Liu Z, Bai Y, Zhou Y, Chen X. Multiple-Responsive Mesoporous Silica
Nanoparticles for Highly Accurate Drugs Delivery to Tumor Cells. ACS
Omega. 2018; 3: 4306-15.
4
5. Xin H, Sha X, Jiang X, Zhang W, Chen L, Fang X. Anti-glioblastoma efficacy
and safety of paclitaxel-loading Angiopep-conjugated dual targeting
PEG-PCL nanoparticles. Biomaterials. 2012; 33: 8167-76.
4
4
6. Liu F, Huang X, Han L, Sang M, Hu L, Liu B, et al. Improved druggability of
gambogic acid using core-shell nanoparticles. Biomater Sci. 2019; 7: 1028-42.
7. Han TH, Ok T, Kim J, Shin DO, Ihee H, Lee HS, et al. Bionanosphere
lithography via hierarchical peptide self-assembly of aromatic
triphenylalanine. Small. 2010; 6: 945-51.
4
4
5
8. Gu Y, Cheng J, Man CW, Wong W, Cheng SH. Gold-doxorubicin
nanoconjugates for overcoming multidrug resistance. Nanomedicine. 2012; 8:
204-11.
9. Hao K, Liu XQ, Wang GJ, Zhao XP. Pharmacokinetics, tissue distribution and
excretion of gambogic acid in rats. Eur J Drug Metab Pharmacokinet. 2007; 32:
63-8.
0. Zhang HZ, Kasibhatla S, Wang Y, Herich J, Guastella J, Tseng B, et al.
Discovery, characterization and SAR of gambogic acid as a potent apoptosis
inducer by a HTS assay. Bioorg Med Chem. 2004; 12: 309-17.