Crystal Growth & Design
Article
fluorenone (3.78 g, 21 mmol) in dry diethyl ether (40 mL) was added
and the mixture was kept at reflux. After completion of the reaction (20
h), which was monitored by TLC (hexane/ethyl acetate 2:1), the
(10) Organic Solid State Reactions, Topics in Current Chemistry; Toda, F.,
Ed.; Springer-Verlag: Berlin, 2005; Vol. 254.
(11) Metal−Organic Frameworks: Design and Application; Gillivray, L.
R., Ed.; Wiley: Hoboken, NJ, U.S.A., 2010.
reaction mixture was cooled, quenched with saturated aqueous NH Cl
4
solution and extracted with Et O (2 × 30 mL). The combined organic
(12) Weber, E. In Inclusion Compounds; Atwwod, J. L., Davies, J. E. D.,
MacNicol, D. D., Eds.; Oxford University Press: Oxford, U.K., 1991;
Vol. 4, pp 188−262.
2
extracts were dried (Na SO ) and evaporated. Recrystallization from
2
4
ethyl acetate yielded a first crop (2.20 g, 43%) of pure product. A second
crop (1.14 g, 22%) was obtained from the filtrate, which was evaporated
(13) Bishop, R. Chem. Soc. Rev. 1996, 25, 311−319.
and purified by flash chromatography on SiO column (hexane/ethyl
(14) Desiraju, G. R. In Comprehensive Supramolecular Chemistry;
MacNicol, D. D., Toda, F., Bishop, R., Eds.; Elsevier: Oxford, U.K.,
1996; Vol. 6, pp 1−22.
(15) Nangia, A. In Nanoporous Materials; Series on Chemical
Engineering; Lu, G. Q., Zhao, X. S., Eds.; Imperial College Press:
London, 2004; Vol. 4, pp 165−187.
(16) Weber, E. In Comprehensive Supramolecular Chemistry; MacNicol,
D. D., Toda, F., Bishop, R., Eds.; Elsevier: Oxford, U.K., 1996; Vol. 6, pp
2
acetate 2:1). Total yield 65% of colorless solid; mp 219−221 °C. IR
(
KBr) ν 3035 (OH), 3035 (C−H, arom.), 1599 (CC), 1446, 1282,
1
1
035; H NMR (250 MHz, CDCl ) δ 2.56 (s, br, OH, 2H), 7.28−7.50
3
13
(
m, 18H, ArH), 7.73−7.79 (m, 6H, ArH); C NMR (63 MHz, CDCl )
3
δ 83.8 (CO), 120.3, 124.4, 124.6, 124.9, 126.4, 128.6, 129.3, 139.7,
+
1
5
41.4, 143.8, 150.4 (Ar). MS (ESI) m/z calcd for [C H O + Na] :
37.6120; found [M + Na] 537.1825.
38
26
2
+
X-ray Crystallography. Crystals of the polymorphs 2A and 2B
5
(
35−592.
17) Weber, E.; Skobridis, K.; Wierig, A.; Stathi, S.; Nassimbeni, L. R.;
Niven, M. L. Angew. Chem., Int. Ed. Engl. 1993, 32, 606−608.
18) Caira, M. R.; Le Roex, T.; Nassimbeni, L. R.; Ripmeester, J. A.;
suitable for X-ray diffraction were obtained by slow crystallization of 2
from acetonitrile and chloroform, respectively. Suitable crystals of the
inclusion compounds 2a−2e were grown by slow evaporation of
solutions of 2 in the respective solvent. The intensity data were collected
(
Weber, E. Org. Biomol. Chem. 2004, 2, 2299−2304.
(19) Skobridis, K.; Theodorou, V.; Alivertis, D.; Seichter, W.; Weber,
on a Bruker APEX II diffractometer with MoK radiation (λ = 0.71073
α
Å) using ω- and ϕ-scans. Reflections were corrected for background,
Lorentz and polarization effects. Preliminary structure models were
E.; Cso
20) Weber, E.; Nitsche, S.; Wierig, A.; Cso
002, 856−872.
21) Le Roex, T.; Nassimbeni, L. R.; Weber, E. Chem. Commun. 2007,
124−1126.
22) Bourne, S. A.; Corin, K.; Cruickshank, D. L.; Davson, J.;
Nassimbeni, L. R.; Su, H.; Weber, E. New J. Chem. 2011, 35, 1556−1561.
23) Skobridis, K.; Paraskevopoulos, G.; Theodorou, V.; Seichter, W.;
̈
regh, I. Supramol. Chem. 2007, 19, 373−382.
(
̈
regh, I. Eur. J. Org. Chem.
40
derived by application of direct methods and were refined by full-
2
(
1
(
2
41
matrix least-squares calculation based on F for all reflections. The
non-hydrogen atoms were refined with anisotropic thermal parameters.
With the exception of the amino hydrogen H(1A) in the structure of 2c,
all other hydrogen atoms were included in the models in calculated
positions and were refined as constrained to bonding atoms.
(
Weber, E. Cryst. Growth Des. 2011, 11, 5275−5288.
ASSOCIATED CONTENT
(24) Klien, H.; Seichter, W.; Weber, E. CrystEngComm 2013, 15, 586−
■
5
96.
*
S
Supporting Information
(25) Snyder, H. R.; Weaver, C.; Marshall, C. D. J. Am. Chem. Soc. 1949,
X-ray crystallographic data in CIF format for the structures
7
1, 289−291.
(26) Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond; Oxford
University Press: Oxford, U.K., 1999; pp 29−121.
27) Nishio, M.; Umezawa, Y.; Honda, K.; Tsuboyama, S.; Suezawa, H.
CrystEngComm 2009, 11, 1757−1788.
28) Dance, I. In Encyclopedia of Supramolecular Chemistry; Atwood, J.
(
AUTHOR INFORMATION
■
(
L., Steed, J. M., Eds.; Dekker: New York, 2004; pp 1076−1092.
(29) Salonen, L. M.; Ettermann, M.; Diederich, F. Angew. Chem., Int.
Ed. 2011, 50, 4808−4842.
(
30) Kitaigorodskii, A. I. In Organic Chemical Crystallography;
Notes
Consultant Bureau: New York, 1961; Ch. 3.
31) PLATON, version 1.15; University of Glasgow: Glasgow, U.K.,
008.
The authors declare no competing financial interest.
(
2
(
32) Etter, M. C. J. Phys. Chem. 1991, 95, 4601−4610.
REFERENCES
■
(33) Bernstein, J.; Davies, R. E.; Shimoni, L.; Chang, N.-L. Angew.
(
1) Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D. Inclusion
Compounds; Oxford University Press: Oxford, U.K., 1991; Vol. 4.
2) Weber, E. Molecular Inclusion and Molecular Recognition-Clathrates I
and II; Topics in Current Chemistry; Springer-Verlag: Berlin, 1987 and
988; Vols. 140 and 149.
3) Herbstein, F. H. Crystalline Molecular Complexes and Compounds;
Chem., Int. Ed. 1995, 34, 1555−1573.
34) Barbour, L. J.; Bourne, S. A.; Caira, M. R.; Nassimbeni, L. R.;
Weber, E.; Skobridis, K.; Wierig, A. Supramol. Chem. 1993, 1, 331−336.
35) Skobridis, K.; Theodorou, V.; Seichter, W.; Weber, E. Cryst.
Growth Des. 2010, 10, 862−869.
36) Caira, M. R..; Le Roex, T.; Nassimbeni, L. R.; Weber, E. Cryst.
Growth Des. 2006, 6, 127−131.
37) Le Roex, T.; Nassimbeni, L. R.; Weber, E. New. J. Chem. 2008, 32,
56−863.
38) Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford
University Press: Oxford, U.K., 1997.
39) Leonhard, J.; Lygo, B.; Procter, G. Praxis der Organischen Chemie;
VCH-Verlagsgesellschaft: Weinheim, Germany, 1996; pp 53−68.
40) Sheldrick, G. M. SHELXS-97: Program for Crystal Structure
Solution; University of Gottingen: Gottingen, Germany, 1997.
41) Sheldrick, G. M. SHELXL-97: Program for Crystal Structure
Refinement; University of Gottingen: Gottingen, Germany, 1997.
(
(
(
1
(
(
IUCR Monographs on Crystallography; Oxford University Press:
Oxford, U.K., 2005; Vol. 1.
(
8
(
(
4) Desiraju, G. R. Crystal Engineering; Materials Science Monographs;
Elsevier: Amsterdam, 1989; Vol. 54, pp 175−198.
5) Weber, E. Design of Organic Solids; Topics in Current Chemistry;
Springer-Verlag: Berlin, 1998; Vol. 198.
6) Making Crystals by Design: Methods, Techniques and Applications;
Braga, D., Creponi, F., Eds.; Wiley-VCH: Weinheim, Germany, 2007.
7) Organic Crystal Engineering; Tiekink, E. R. T., Vittal, J. J.
Zaworotko, M. J., Eds.; Wiley: Chichester, U.K., 2010.
8) Comprehensive Supramolecular Chemistry; MacNicol, D. D., Toda,
F., Bishop, R., Eds.; Elsevier: Oxford, U.K., 1996; Vol. 6.
9) Hertzsch, T.; Hulliger, J.; Weber, E.; Sozzani, P. In Encyclopedia of
(
(
(
(
(
̈
̈
(
(
̈
̈
(
Supramolecular Chemistry; Atwood, J. L., Steed, J. W., Eds.; CRC Press:
Boca Raton, FL, U.S.A., 2004; pp 996−1005.
K
dx.doi.org/10.1021/cg400707s | Cryst. Growth Des. XXXX, XXX, XXX−XXX