10.1002/adsc.201701394
Advanced Synthesis & Catalysis
In a Schlenk tube equipped with a magnetic stirring bar
boronate 2 (0.220 mmol, 1.1 equiv.), Pd(OAc)2 (2.25 mg,
10.0 mol, 5.0 mol %) XPhos (9.53 mg, 20.0 μmol,
Lücking, Angew. Chem., Int. Ed. 2013, 52, 9399–9408;
b) M. Frings, C. Bolm, A. Blum, C. Gnamm, Eur. J.
Med. Chem. 2017, 126, 225–245; c) J. A. Bull, L.
Degennaro, R. Luisi, Synlett online, DOI: 10.1055/s-
0036-1590874; d) K. E. Arndt, D. C. Bland, N. M.
Irvine, S. L. Powers, T. P. Martin, J. R. McConnell, D.
E. Podhorez, J. M. Renga, R. Ross, G. A. Roth, B. D.
Scherzer, T. W. Toyzan, Org. Process Res. Dev. 2015,
19, 454–462 and references therein.
10 mol %) and the
- if solid - aryl bromide 13
(0.200 mmol) were suspended in 1,4-dioxane (2.4 mL). (A
liquid aryl bromide 13 was added by using a syringe after
the tube was sealed.) The tube was placed under argon and
sealed with a rubber septum. The mixture was stirred at r.t.
for 10 min., and then a 2 M aqueous degassed K2CO3
solution (0.500 mL, 1.00 mmol, 5.0 equiv.) was added by
syringe, and the mixture was heated at 60 °C for 24 h.
After cooling to r.t., the solvents were removed under
reduced pressure and the residue was directly subjected to
purification by FCC affording N-arylated sulfoximine 14.
[12] For a review on sulfur imidations providing NH- and
N-functionalized sulfoximines, see: V. Bizet, C. M. M.
Hendriks, C. Bolm, Chem. Soc. Rev. 2015, 44, 3378–
3390.
Acknowledgements
[13] In the recent patent literature, palladium-catalyzed
cross-couplings with 4,4,5,5-tetramethyl-2-aryl-1,3,2-
dioxaborolanes bearing N-bound S,S-dimethylsulfox-
imidoylic substituents can be found. For examples, see:
a) F. Himmelsbach, E. Langkopf, H. Wagner, Patent
Appl. WO 2015007669 A1, 2015; b) Y. Tamura, Y.
Hinata, E. Kojima, H. Ozasa, Patent Appl. WO
2016031842 A1, 2016; c) F. Himmelsbach, E.
Langkopf, WO 2016113299 A1, 2016.
This work was supported by the Deutsche Forschungsgemein-
schaft through the International Research Training Group
SeleCa (IGRK 1628).
References
[1] S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54,
3451–3479.
[2] For the "Nobel Review", see: A. Suzuki, Angew. Chem.
2011, 123, 6854-6869; Angew. Chem. Int. Ed. 2011, 50,
6723–6737.
[14] For recent examples of molecules with N-bound
methyl sulfonamidoyl groups, where this concept could
be applied, see: a) J. Kankanala, C. Marchand, M.
Abdelmalak, H. Aihara, Y. Pommier, Z. Wang, J. Med.
Chem. 2016, 59, 2734–2746; b) J. Schmidt, M. Rotter,
T. Weiser, S. Wittmann, L. Weizel, A. Kaiser, J.
Heering, T. Goebel, C. Angioni, M. Wurglics, A.
Paulke, G. Geisslinger, A. Kahnt, D. Steinhilber, E.
Proschak, D. Merk, J. Med. Chem. 2017, 60, 7703–
7724.
[3] F. Lovering, J. Bikker, C. Humblet, J. Med. Chem.
2009, 52, 6752–6756.
[4] W. P. Walters, J. Green, J. R. Weiss, M. A. Murcko, J.
Med. Chem. 2011, 54, 6405–6416.
[5] B. J. Reizman, Y.-M. Wang, S. L. Buchwald, K. F.
Jensen, React. Chem. Eng. 2016, 1, 658–666.
[6] C. Len, S. Bruniaux, F. Delbecq, V. S. Parmar,
[15] An analogy can be seen in the research performed by
AstraZeneca, who described transformations of
"dimethylsulfoximine as a versatile precursor". For
details, see: F. W. Goldberg, J. G. Kettle, J. Xiong, D.
Lin, Tetrahedron 2014, 70, 6613–6622.
Catalysts 2017, 7, 146.
[7] J. Li, S. G. Ballmer, E. P. Gillis, S. Fujii, M. J. Schmidt,
A. M. E. Palazzolo, J. W. Lehmann, G. F. Morehouse,
M. D. Burke, Science 2015, 347, 1221–1226.
[16] The state-of-the art approach towards biaryls with N-
bound sulfoximidoyl groups makes use of Buchwald-
Hartwig type cross couplings starting from biaryl
halides and NH-sulfoximines. It is a well established
route, but requires multi-step syntheses of individual
starting materials. For representative examples, see: a)
C. Bolm, J. P. Hildebrand, Tetrahedron Lett. 1998, 37,
5731–5734; b) M. Harmata, N. Pavri, Angew. Chem.
1999, 111, 2577–2579; Angew. Chem. Int. Ed. 1999, 38,
2419–2421; c) C. Bolm, J. P. Hildebrand, J. Org. Chem.
2000, 65, 169–175; d) J. Sedelmeier, C. Bolm, J. Org.
Chem. 2005, 70, 6904–6906; e) C. Moessner, C. Bolm,
Org. Lett. 2005, 7, 2667–2669; f) A. Correa, C. Bolm,
Adv. Synth. Catal. 2008, 350, 391–394; g) M. Harmata,
X. Hong, Synthesis 2007, 969–973; h) M. Yongpruksa,
N. L. Calkins, M. Harmata, Chem. Commun. 2011, 47,
7665–7667.
[8] a) J. Li, A. S. Grillo, M. D. Burke, Acc. Chem. Res.
2015, 48, 2297–2307; b) E. M. Woerly, J. E. Miller, M.
D. Burke, Tetrahedron 2013, 69, 7732–7740; c) G. R.
Dick, E. M. Woerly, M. D. Burke, Angew. Chem. Int.
Ed. 2012, 51, 2667–2672; d) J. Li, M. D. Burke, J. Am.
Chem. Soc. 2011, 133, 13774–13777; e) J. R. Struble, S.
J. Lee, M. D. Burke, Tetrahedron 2010, 66, 4710–
4718; f) G. R. Dick, D. M. Knapp, E. P. Gillis, M. D.
Burke, Org. Lett. 2010, 12, 2314–2317; g) D. M.
Knapp, E. P. Gillis, M. D. Burke, J. Am. Chem. Soc.
2009, 131, 6961–6963.
[9] a) Q. I. Churches, J. F. Hooper, C. A. Hutton, J. Org.
Chem. 2015, 80, 5428–5435; b) L. Xu, S. Zhang, P. Li,
Chem. Soc. Rev. 2015, 44, 8848–8858; c) L. Xu, S.
Ding, P. Li, Angew. Chem., Int. Ed. 2014, 53, 1822–
1826; d) A. J. J. Lennox, G. C. Lloyd-Jones, Chem.
Soc. Rev. 2014, 43, 412–443.
[17] For detailed insight into Suzuki cross-couplings, see:
a) J. A. Gonzalez, O. M. Ogba, G. F. Morehouse, N.
Rosson, K. N. Houk, A. G. Leach, P. H. Y. Cheong, M.
D. Burke, G. C. Lloyd-Jones, Nat. Chem. 2016, 8,
1067–1075; b) A. J. J. Lennox, G. C. Lloyd-Jones,
[10] A.-D. Steinkamp, S. Wiezorek, F. Brosge, C. Bolm,
Org. Lett. 2016, 18, 5348–5351.
[11] For the relevance of sulfoximines in medicinal
chemistry and crop protection, see, for example: a) U.
5
This article is protected by copyright. All rights reserved.